Metallic lead

Evaluation of the effects on reproduction, recommendation for classification

Gezondheidsraad

Health Council of the Netherlands

Aan de Staatssecretaris Sociale Zaken en Werkgelegenheid

Onderwerp: Aanbieding advies 'Metallic lead'Uw kenmerk: DGV/MBO/U-932542Ons kenmerk: U 98/AvdB/ra/543-M6Bijlagen: 1Datum: 18 februari 2003

Mijnheer de staatssecretaris,

Bij brief van 3 december 1993, nr DGV/MBO/U-932542, verzocht de Staatssecretaris van Welzijn, Volksgezondheid en Cultuur namens de Minister van Sociale Zaken en Werkgelegenheid om naast het afleiden van gezondheidskundige advieswaarden ook te adviseren over andere onderwerpen ten behoeve van de bescherming van beroepsmatig aan stoffen blootgestelde personen. In 1995 heeft de Staatssecretaris van Sociale Zaken en Werkgelegenheid besloten tot het opstellen van een zogenaamde niet-limitatieve lijst van voor de voortplanting vergiftige stoffen. Op deze lijst komen stoffen die volgens de richtlijnen van de Europese Unie ingedeeld moeten worden in categorie 1, 2 en 3 wat betreft effecten op de voortplanting en stoffen die schadelijk kunnen zijn voor het nageslacht via de borstvoeding. De Gezondheidsraad is verzocht om voor stoffen een classificatie volgens de EU-criteria voor te stellen.

In dit kader bied ik u hierbij een advies aan over metallisch lood. Dit advies is opgesteld door de Commissie Reproductietoxische stoffen van de Gezondheidsraad en beoordeeld door de Beraadsgroep Gezondheid en Omgeving.

Ik heb deze publicatie heden ter kennisname aan de Minister van Volksgezondheid, Welzijn en Sport en aan de Minister van de Volkshuisvesting, Ruimtelijke Ordening en Milieu gestuurd.

Hoogachtend,

prof. dr JA Knottnerus

Bezoekadres Parnassusplein 5 2511 VX Den Haag Telefoon (070) 340 7520 E-mail: A.vd.Burght@gr.nl Postadres Postbus 16052 2500 BB Den Haag Telefax (070) 340 75 23 www.gr.nl

Metallic lead

Evaluation of the effects on reproduction, recommendation for classification

Committee for compounds toxic to reproduction A Committee of the Health Council of the Netherlands

to:

the Minister and State Secretary of Social Affairs and Employment

No. 2003/03OSH, The Hague, February 18, 2003

The Health Council of the Netherlands, established in 1902, is an independent scientific advisory body. Its remit is "to advise the government and Parliament on the current level of knowledge with respect to public health issues..." (Section 21, Health Act).

The Health Council receives most requests for advice from the Ministers of Health, Welfare & Sport, Housing, Spatial Planning & the Environment, Social Affairs & Employment, and Agriculture, Nature Preservation & Fisheries. The Council can publish advisory reports on its own initiative. It usually does this in order to ask attention for developments or trends that are thought to be relevant to government policy.

Most Health Council reports are prepared by multidisciplinary committees of Dutch or, sometimes, foreign experts, appointed in a personal capacity. The reports are available to the public.

all rights reserved

ISBN: 90-5549-468-2

Preferred citation:

Health Council of the Netherlands: Committee for Compounds toxic to reproduction. Metallic lead; Evaluation of the effects on reproduction, recommendation for classification. The Hague: Health Council of the Netherlands, 2003; publication no. 2003/03OSH.

Contents

	Samenvatting 9
	Executive summary 11
1	Scope 13
1.1	Background 13
1.2	Committee and procedure 13
1.3	Additional considerations 14
1.4	Labelling for lactation 15
1.5	Data 15
1.6	Presentation of conclusions 16
1.7	Final remark 16
2	Metalic lead 17
2.1	Introduction 17
2.2	Properties 18
2.3	Human studies 18
2.4	Animal studies 26
2.5	Conclusion 26

	References 29
	Annexes 39
А	The committee 41
В	Comments on the public draft 43
С	Directive (93/21/EEC) of the European Community 45
D	Fertility and developmental toxicity studies 51
Е	Calculation safe levels of lead in (human) breast milk 73
F	Abbreviations 75

Samenvatting

Op verzoek van de Minister van Sociale Zaken en Werkgelegenheid beoordeelt de Gezondheidsraad de effecten op de reproductie van stoffen waaraan mensen tijdens de beroepsuitoefening kunnen worden blootgesteld. De Commissie Reproductietoxische stoffen, een commissie van de Raad, adviseert een classificatie van reproductietoxische stoffen volgens Richtlijn 93/21/EEC van de Europese Unie. In het voorliggende rapport heeft de commissie metallisch lood onder de loep genomen.

De commissie is van mening dat metallisch lood overeenkomstig de anorganische lood verbindingen geclassificeerd moet worden (die reeds door de Europese Unie zijn geëvalueerd).

De aanbevelingen van de commissie zijn:

- Voor effecten op de fertiliteit adviseert de commissie metallisch lood te classificeren in categorie 3 (*stoffen die in verband met hun mogelijke voor de fertiliteit schadelijke effecten reden geven tot bezorgdheid voor de mens*) en met R62 (*mogelijk gevaarlijk voor de vruchtbaarheid*) te kenmerken.
- Voor effecten op de ontwikkeling adviseert de commissie metallisch lood in categorie 1 (*stoffen waarvan bekend is dat zij bij de mens ontwikkelingsstoornissen veroorzaken*) te classificeren en men R61 (*kan het ongeboren kind schaden*) te kenmerken.
- Voor effecten tijdens lactatie adviseert de commissie om metallisch lood met R64 (*kan schadelijk zijn via de borstvoeding*) te kenmerken.

Executive summary

On request of the Minister of Social Affairs and Employment, the Health Council of the Netherlands evaluates the effects on the reproduction of substances at the workplace. The Health Council's Committee for Compounds Toxic to Reproduction recommends to classify compounds toxic to reproduction according to the Directive 93/21/EEC of the European Union. In the present report the committee has reviewed metallic lead.

The committee is of the opinion that metallic lead should be classified consistent with inorganic lead compounds (which have already been classified by the European Union). The committee's recommendations are

- For effects on fertility, the committee recommends to classify metallic lead in category 3 (*substances which cause concern for human fertility*) and to label with R62 (*possible risk of impaired fertility*).
- For developmental toxicity, the committee recommends to classify metallic lead in category 1 (*substances known to cause developmental toxicity in humans*) and to label with R61 (*may cause harm to the unborn child*)
- For effects during lactation, the committee recommends that metallic lead should be labelled with R64 (*may cause harm to breastfed babies*).

Chapter 1 Scope

1.1 Background

As a result of the Dutch regulation on registration of compounds toxic to reproduction that came into force on 1 April 1995, the Minister of Social Affairs and Employment requested the Health Council of the Netherlands to classify compounds toxic to reproduction. The classification is performed by the Health Council's Committee for Compounds Toxic to Reproduction according to the guidelines of the European Union (Directive 93/21/EEC). The committee's advice on the classification will be applied by the Ministry of Social Affairs and Employment to extend the existing list of compounds classified as toxic to reproduction (class 1, 2 or 3) or labelled as 'may cause harm to breastfed babies' (R64).

1.2 Committee and procedure

The present document contains the classification of metallic lead by the Health Council's Committee for Compounds Toxic to Reproduction. The members of the committee are listed in Annex A. The first draft of this report was prepared by dr ir MEM Kuilman and ir DH Waalkens-Berendsen at the Department of Target Organ Toxicology of TNO Nutrition and Food Research, Zeist, The Netherlands, by contract with the Ministry of Social Affairs and Employment. The classification is based on the evaluation of published human and animal studies concerning adverse effects with respect to fertility and development and lactation of the above mentioned compound. Classification and labelling was performed according to the guidelines of the European Union listed in Annex C.

Classification for fertility	y and development
Category 1	Substances known to impair fertility in humans (R60)
	Substances known to cause developmental toxicity in humans (R61)
Category 2	Substances which should be regarded as if they impair fertility in humans (R60)
	Substances which should be regarded as if they cause developmental toxicity in humans (R61)
Category 3	Substances which cause concern for human fertility (R62)
	Substances which cause concern for humans owing to possible developmental toxic effects (R63)
No classification for effe	ects on fertility or development
Labelling for lactation:	
	May cause harm to breastfed babies (R64)
	No labelling for lactation

In 2002, the President of the Health Council released a draft of the report for public review. The individuals and organisations that commented on the draft report are listed in Annex B. The committee has taken these comments into account in deciding on the final version of the report.

1.3 Additional considerations

The classification of compounds toxic to reproduction on the basis of the Directive 93/ 21/EEC is ultimately dependent on an integrated assessment of the nature of all parental and developmental effects observed, their specificity and adversity, and the dosages at which the various effects occur. The directive necessarily leaves room for interpretation, dependent on the specific data set under consideration. In the process of using the directive, the committee has agreed upon a number of additional considerations.

- If there is sufficient evidence to establish a causal relationship between human exposure to the substance and impaired fertility or subsequent developmental toxic effects in the progeny, the compound will be classified in category 1, irrespective the general toxic effects (see Annex C, 4.2.3.1 category 1).
- Adverse effects in a reproductive or developmental study, in the absence of data on parental toxicity, occurring at dose levels which cause severe toxicity in other studies, need not necessarily lead to a category 2 classification.

- If, after prenatal exposure, small reversible changes in foetal growth and in skeletal development (e.g. wavy ribs, short rib XIII, incomplete ossification) in offspring occur at a higher incidence than in the control group in the absence of maternal effects, the substance will be classified in category 3 for developmental toxicity. If these effects occur in the presence of maternal toxicity, they will be considered as a consequence of this and therefore the substance will not be classified for developmental toxicity (see Annex C, 4.2.3.3 developmental toxicity final paragraph).
- Clear adverse reproductive effects will not be disregarded on the basis of reversibility per se.
- Effects on sex organs in a general toxicity study (e.g. in a subchronic or chronic toxicity study) may warrant classification for fertility.
- The committee not only uses guideline studies (studies performed according to OECD standard protocols*) for the classification of compounds, but non-guideline studies are taken into consideration as well.

1.4 Labelling for lactation

The recommendation for labelling substances for effects during lactation is also based on Directive 93/21/EEC. The Directive defines that substances which are absorbed by women and may interfere with lactation or which may be present (including metabolites) in breastmilk in amounts sufficient to cause concern for the health of a breastfed child, should be labelled with R64. Unlike the classification of substances for fertility and developmental effects, which is based on a hazard identification only (largely independent of the dosage), the labelling for effects during lactation is based on a risk characterisation and therefore also includes consideration of the level of exposure of the breastfed child.

Consequently, a substance should be labelled for effects during lactation when it is likely that the substance would be present in breast milk in potentially toxic levels. The committee considers a concentration of a compound as potentially toxic to the breastfed child when this concentration leads to exceedence of the exposure limit for the general population, eg the acceptable daily intake (ADI).

1.5 Data

Literature searches were conducted in the on-line databases Toxline and Medline, starting from 1966 up to 2000. Literature was selected primarily on the basis of the text

Organisation for Economic Cooperation and Development

of the abstracts. Publications cited in the selected articles, but not selected during the primary search, were reviewed if considered appropriate. In addition, handbooks and a collection of most recent reviews were consulted as well as several websites regarding (publications on) toxicology and health. References are divided in literature cited and literature consulted but not cited.

The committee chose to describe human studies in the text, starting with review articles and, in addition, the studies are summarised in Annex D. Of each study the quality of the study design (performed according to internationally acknowledged guidelines) and the quality of documentation are considered.

Animal data are described in the text and summarised in Annex D.

1.6 Presentation of conclusions

The classification is given with key effects, species and references specified. In case a substance is not classified as toxic to reproduction, one of two reasons is given:

- Lack of appropriate data preclude assessment of the compound for reproductive toxicity.
- Sufficient data show that no classification for toxic to reproduction is indicated.

1.7 Final remark

The classification of compounds is based on hazard evaluation* only, which is one of a series of elements guiding the risk evaluation process. The committee emphasises that for derivation of health based occupational exposure limits these classifications should be placed in a wider context. For a comprehensive risk evaluation, hazard evaluation should be combined with dose-response assessment, human risk characterisation, human exposure assessment and recommendations of other organisations.

Chapter

Metallic lead

2.1 Introduction

2

The aim of this report is to classify metallic lead for its possible effects on reproduction. Lead occurs in different forms, which can be categorised in soluble and insoluble lead salts, ionic lead, metallic lead and organic lead compounds (e.g. tetra ethyllead). However, in papers regarding exposure to lead or toxic effects of lead, the different lead compounds are usually not specified. The analytical methods for determining the lead exposure do no specify the different lead species. In general, only a distinction is made between organic and inorganic lead compounds (IPC95). Inorganic lead comprises metallic lead, its salts and oxides/sulfides (ATS97). Because metallic lead partly decomposes in air in several lead compounds (eg leadoxide), the committee is of the opinion that exposure to pure metallic lead is unlikely. The committee assumes that exposure to metallic lead is always accompanied by exposure to other inorganic lead compounds.

The group of lead compounds* has already been classified for effects on reproduction by the European Union. For effects on fertility, lead compounds have been classified in category 3 (*substances which cause concern for human fertility*) and labelled with R62 (*possible risk of impaired fertility*). Lead compounds have been classified for developmental toxicity in category 1 (*Substances known to cause*

The ministry of Social Affairs and Employment assumed that metallic lead was not included in the group of inorganic lead compounds which is classified by the EU for effects on reproduction

developmental toxicity in humans) and labelled with R61 (*may cause harm to the unborn child*). For effects during lactation lead compounds have not been labelled.

2.2 Properties

Name	:	(metallic) lead
CAS-no	:	7439-92-1
Use	:	batteries, pigments, alloys
Mol weight	:	207.19
Chem formula	:	Pb
Conversion factor	:	$1 \text{ ppm} = 8.63 \text{ mg/m}^3 (101 \text{ kPa}, 25^{\circ}\text{C})$
		$1 \text{ mg/m}^3 = 0.12 \text{ ppm}$
		$1\% = 10000 \text{ ppm} = 12000 \text{ mg/m}^3$

2.3 Human studies

Human studies are described in more detail in Tables 1, 2 and 3 (Annex D).

Fertility

Several studies regarding the effects of exposure to (unspecified) lead compounds on fertility in men were found.

Lancranjan *et al.* (Lan75) studied the reproductive ability of men occupationally exposed to unspecified lead compounds in a battery plant. Exposed men were divided into 1) lead poisoned men, men showing 2) moderately increased, 3) slightly increased or 4) physiological absorption of lead. Mean BLLs (blood (total) lead levels) of the groups were 230, 410, 530 and 750 μ g/l. All groups showed effects on spermatogenesis (hypospermia and asthenospermia) and the group with BLLs higher than 410 μ g/l showed teratospermia.

Braunstein *et al.* (Bra78) found that the intercourse frequency and testosterone levels were significantly decreased in a small group of lead (unspecified) poisoned (BLL 387 μ g/l) and (unspecified) lead exposed men (290 μ g/l) working in a lead smelter compared to controls (161 μ g/l). No significant differences occurred in sperm volume, motility and percentage of abnormal forms between the groups. Testicular biopsies of 2 lead poisoned men showed both increased peritubular connective tissue, decreased spermatogenesis and the presence of lipofuscin bodies. Moreover, the excretion of LH (luteinizing hormones) differed in the poisoned men compared to the other groups. Poisoned men quit working and were treated with Ca EDTA 3 months before the onset of the study. Wildt *et al.* (Wil83) found no differences in sperm morphology, count, motility and biochemistry of men with high (unspecified) lead exposure (mean BLL 450 μ g/l) compared to men with low exposure (220 μ g/l) at a battery factory. However, the chromatin of the spermatozoa of the men with high (unspecified) lead exposure had a significantly lower stability than the chromatin of the lower exposed men and a decreased function of the accessory genital gland was found more frequently among higher exposed men.

Cullen (Cul84) described 7 men with several occupations who were intoxicated with (unspecified) lead compounds and underwent endocrine evaluation at the time of diagnosis (maximum BLLs 660-1390 μ g/l). Defects in thyroid function were present in 3 patients, whereas 6 patients had subnormal glucocorticoid production and plasma cortisol responses. Although serum testosterone concentration was normal in 6 patients, 5 had defects in spermatogenesis, including 2 with oligospermia and 2 with azoospermia. Repeated examinations after chelation therapy showed only partial improvement.

Chowdhury *et al.* (Cho86) showed a small group of men who worked at a printing company with blood and semen (total) lead levels of 425 and 148 μ g/l, respectively, to have less motile sperm, lower sperm counts and a higher amount of sperm with tail abnormalities than controls from the administrative staff (lead levels significantly lower, but unknown). Seminal plasma acid phosphatase, succinic dehydrogenase and fructose content were lower in exposed men, whereas sperm volume, pH, colour and viscosity did not differ between exposed and controls.

Wives of men working at a battery plant (mean BLL 640 μ g/l) had a significantly (p<0.01) higher rate of spontaneous abortions compared to the controls with 2-3 times less lead (unspecified compounds) in their blood (AlH86).

Govoni *et al.* (Gov87) showed that the prolactin levels in men who were working in small pewter factories, were higher when blood lead (unspecified compounds) and ZPP (zinc protoporphyrin) levels were higher than 400 μ g/l or when ZPP is higher than 400 μ g/l. However, all prolactin levels were within the normal range).

Compared to cement workers, men working in a storage battery plant for 1 to 10 years showed significantly higher BLLs (610 versus 180 μ g/l), semen lead (unspecified) and zinc protoporphyrin IX levels (Ass87). No differences were found in mean testosterone, prolactin, total neutral 17-ketosteroid, LH and FSH levels. However, the frequency distribution of sperm count was significantly lowered in unspecified lead exposed men.

Fischer-Fischbein *et al.* (Fis87) described the case of a firearms instructor who had not been able to conceive a child for 2 years. At the start of chelation therapy his BLL was 880 μ g/l which sank within 6 months to 300 μ g/l. After 2.5 years of therapy, the semen volume had decreased by a factor 2, whereas sperm density and total sperm count

had increased about 16 and 9 times, respectively. The motility of the sperm had remained equal whereas normal morphological appearance and head defects had slightly improved. After 1 year of therapy a healthy child was conceived.

Rodamilans *et al.* (Rod88) studied effects of exposure to (unspecified) lead compounds on several endocrine parameters of men working in a lead smelter for <1 year, 1-5 years or >5 years. BLLs and zinc protoporphyrin IX were significantly increased in all exposed groups (BLL ca. 700 μ g/l) compared to the controls (170 μ g/l). Serum testosterone was significantly decreased after more than 5 years of exposure and the free testosterone index after more than 1 year of exposure compared to controls. Steroid binding globulin was increased after exposure for more than 1 year and LH at all exposure durations. FSH concentration did not change.

Gustafson *et al.* (Gus89) studied hormone levels in men exposed to (unspecified) lead compounds in a secondary lead smelter (BLL 390 μ g/l) and controls (50 μ g/l). Only FSH levels were significantly decreased in the lead (unspecified) exposed men. When only workers aged younger than 40 years were taken into account (as correlations exist for several hormones and age), thyroxin levels were increased and FSH, LH and cortisol levels were decreased compared to controls.

Coste *et al.* (Cos91) showed that BLLs higher than 600 μ g/l (overall mean 463 μ g/l) in men working at a battery factory, are not associated with fertility (defined as the number of live births to a couple in one year).

Men exposed to (unspecified) lead compounds in three battery factories showed significantly higher blood lead ($352 \mu g/l$) and aminolevulinic acid dehydratase levels than controls (BLL 83 $\mu g/l$) (Ng91). Moreover, LH and FSH levels were significantly increased at the age of 40 years and younger, whereas testosterone was lower at the age of 40 years and older compared to controls. Prolactin levels did not differ. Both secondary hypogonadism and compensated primary hypogonadism were significantly elevated in the exposed group.

Lindbohm *et al.* (Lin91) concluded from a case-control study using a set of Finnish registries in which the association between paternal exposure to (unspecified) lead compounds and spontaneous abortions was studied, that the data only demonstrated a significant relationship between spontaneous abortion and BLLs higher than 311 μ g/l at time of spermatogenesis.

Lerda *et al.* (Ler92) showed a significant decrease in sperm count, motility and death cells in men working at a battery factory with mean BLLs of 486-866 μ g/l compared to controls working at the same factory (BLL 235 μ g/l). In all exposed groups, the percentage of anomalies had increased significantly.

Hu et al. (Hu92) also reported decreased number of sperm and increased the incidence of teratospermia as well as a decreased level of lactate dehydrogenase-x in

sperm of men exposed to (unspecified) lead compounds in a printing house or battery factory (mean urine lead level $87.6 \mu g/l$).

Gennart *et al.* (Gen92a) did not find evidence for significant differences in a variety of renal and endocrine blood parameters, total erythrocyte count and an autonomic nervous system parameter between men employed in a lead (unspecified lead compounds) acid battery factory for at least 1 year (mean BLL 510 μ g/l) and comparable controls (209 μ g/l).

Gennart *et al.* (Gen92b) studied the effects of exposure to (unspecified) lead compounds on male reproductive function in a battery plant. While the fertility, the probability of a live birth, of the lead-exposed workers (BLL 463 μ g/l) was somewhat greater than that of the unexposed (104 μ g/l) before the onset of exposure, a significant decrease in fertility was observed during the period of exposure to unspecified lead compounds.

Alexander *et al.* (Ale96) showed geometric mean sperm concentration and total sperm count to be inversely related to BLL (BLL <150 μ g/l, 150-240 μ g/l, 250-390 μ g/l and >400 μ g/l). Employees with BLLs higher than 400 μ g/l had an increased risk of having low sperm concentration and low total sperm count according to WHO norms. Sperm concentration, total sperm count and total motile sperm count were inversely related to long term lead exposure. No relations were found between (unspecified) lead exposure and sperm motility and morphology and serum levels of reproductive hormones.

Lin *et al.* (Lin96) examined the relationship between exposure to (unspecified) lead compounds and fertility (actual versus expected number of births) for exposed men (BLLs 250-340 μ g/l, 350-490 μ g/l and >500 μ g/l) with a group of bus drivers as a control. The overall standard fertility ratio was significantly lower for the exposed men, especially for men with heavy exposure (>500 μ g/l and duration of exposure for 5 years) and long exposure (more than 5 years). BLLs of bus drivers were not measured.

Sallmén *et al.* (Sal00) studied the time to pregnancy of the wives of men occupationally exposed to (unspecified) lead compounds. Exposure categories were 104-186 μ g/l, 207-290 μ g/l, 311-373 μ g/l and >394 μ g/l; only for the 3rd category a significant relation was found between the adjusted fecundability density ratio for wives of exposed men and controls (BLLs <104 μ g/l).

Sallmén *et al.* (1995) studied the fertility of women occupationally exposed to (unspecified) lead compounds with BLLs in three categories: 100 μ g/l, 100<BLL>190 μ g/l and BLL 190 μ g/l. No relationships were found between BLL and time to pregnancy or decreased fecundability after adjustment for several confounders.

The committee emphasises that none of the above described fertility studies concerned exposure to *pure* metallic lead.

Development

In a retrospective case control study, Sallmén *et al.* (Sal92) showed an increased odds ratio for congenital malformations after paternal exposure to (unspecified) lead compounds for 80 days prior to conception (BLLs controls <186 μ g/l, exposed between 207 μ g/l and >394 μ g/l). However, this increase was not significant. Moreover, all case children had a different type of malformation.

Kristensen *et al.* (Kri93) studied the effects of paternal exposure to (unspecified) lead compounds in members of three printers' unions in Oslo. The (unspecified) lead exposure did not appear to have substantial impact on preterm birth, birth weight and gestational age. However, exposure to unspecified lead compounds was associated with an increased risk of death in the perinatal period (combining late abortions, stillbirths and early neonatal deaths). Birth defects were generally not associated with lead exposure, although a significantly increased risk of cleft lip and/or palate was observed among the male offspring of fathers belonging after exposure to lead or to lead and solvents together.

Fahim *et al.* (Fah92) showed that preterm and term pregnancies with premature rupture of the membrane occured more in the area around a lead smelter than in an area without any mining activities. However, mean foetal and maternal BLL did not differ between the areas. For each area maternal and foetal BLLs for preterm and term with premature rupture were 2-4 times higher than for term pregnancies.

Several papers compared women living around a lead smelter in Port Pirie (Australia) to women living in the surrounding agricultural area. The mean prenatal and perinatal BLLs in the Port Pirie women (106 μ g/l) were significantly higher than in the agricultural women (76 μ g/l) (Mc86). Although more Port Pirie women had a spontaneous abortion than non-Port Pirie women, these were not related to BLL. The relative risk for a pre-term delivery was significantly increased at BLLs of >140 μ g/l. Stillbirths were negatively associated with individual maternal BLL. BLLs were not related to birth weight, crown heel length, head circumference, premature rupture of membranes, congenital anomalies or difficulties in conceiving.

In the children born in the same Australian cohort, Wigg *et al.* (Wig88) studied neurological development at 24 months of age in relation to BLLs of the pregnant mother and of the child after birth. Bayley's Mental Development Index was only negatively correlated to the maternal BLL at 20 weeks of gestation, whereas Bayley's Psychomotor Development Index was not related to any BLL measured. At 4 years of age the children were assessed with the McCarthy Scales of Children's Abilities (Mc88). Although relations between antenatal BLLs and several parameters existed, they did not remain after adjustment for certain covariates.

A comparable cohort study was performed in Yugoslavia. BLLs were 160 and 52 μ g/l for women living around the lead smelter and women from another town at the time of study (Mur90). After adjustment for cofactors no differences were found regarding town of residence and spontaneous abortion or stillbirths. In a different subgroup of this cohort, no relation between birth weight or length of gestation and town of residence or midpregnancy BLL (54 μ g/l in the town versus 191 μ g/l around the lead smelter) was observed (Fac91). In addition, it was shown that preterm delivery did not increase with BLL (neither with BLL at mid-pregnancy nor with cord or maternal BLL at delivery).

Mean gestational age, birth weight, height and head circumference were also not found to be related to BLLs of women working in a storage battery factory with maximal mean BLLs of 203.8 μ g/l in comparison to control women (max. mean BLL 72.5 μ g/l) (Wan96).

Finally, Rothenberg *et al.* (Rot92) described a case of a pregnant women whose BLL was ca. 100 μ g/l until week 36 of pregnancy and rose, after starting using a glazed ceramic pitcher containing lead, to ca. 500 μ g/l at delivery. The BLL of the baby amounted to ca. 1000 μ g/l at delivery and decreased to 175 μ g/l at 3 years of age. Psychometric and diagnostic testing yielded scores within normal limits out to 3 years. However, hypertonia, irritability, abnormal cry and other neurological soft signs at 2, 15 and 30 days were found. EEG sleep patterns were fragmented at 20 days and 3 months and abnormal respiratory patterns were noted to 6 months. Moreover, at every visit hyperactivity and distractibility were noted until finishing of the follow up at three years of age.

Again, the committee emphasises that none of the above described developmental toxicity studies concerned exposure to *pure* metallic lead.

Lactation

Several studies are summarised regarding lead (unspecified compounds) levels in milk. Two groups of studies are considered: exposure to chemically specified sources and non-specified sources. The latter studies are further subdivided according to geographic region because different lifestyle conditions may influence lead levels in breast milk.

The FAO/WHO (FAO93) recommended a PWTI (provisional tolerable weekly intake) for lead of 25 μ g/kg body weight. From this, an acceptable lead level of 16 μ g/l in human breast milk can be calculated (see Annex D).

Specified source

Three reports regarding concentrations of (unspecified) lead compounds in breast milk of women exposed specifically to lead were available. In the first 2 months of lactation, Ryu *et al.* (Ryu78) measured up to 63 μ g/l in breast milk of a woman who had worked for 3 years at a producer of batteries until 7 weeks before delivery. Namihira *et al.* (Nam93) found a maximum of 350 μ g/l (mean 24.7 μ g/l) in breast milk given within 2 months after parturition by women living within 200 m of a lead smelter in Mexico City. Women around a lead smelter in Sweden gave, 6 weeks postpartum, milk with a mean of 0.9 μ g Pb/l (Pal95).

Lead concentrations in breast milk of women not particularly exposed to lead also varied widely. The highest concentrations were reported by Noirfalise *et al.* (Noi67), who found up to 1500 µg/l in breast milk of women living in the province of Liège (Belgium). The mean lead content of the 76 samples amounted to 277 µg/l and 74 samples contained between 0 and 900 µg Pb/l. The analytical method used by Noirfalise *et al.* (Noi67) (polarography), however, differs widely from the ones used in other studies (atomic absorption spectrometry and anodic stripping voltametry).

Unspecified sources

Europe

Samples collected during four consecutive years in Germany (Niedersachsen) showed median breast milk lead (unspecified compounds) levels of <4, 43, 35 and 4 μ g/l for 1987, 1988, 1989 and 1990, respectively (End92). Significant differences in breast milk lead levels between rural and urban areas were found in Croatia (4.7 versus 10.6 μ g/l) (Frk97) and Germany (9.2 versus 13.2 μ g/l) (Ste85). However, in studies in Austria (Tir 94) and Greece (Vav97) with mean breast milk lead levels of 3.4 μ g/l (range 0-20.4 μ g/l) and 90 μ g/l (range 50-250 μ g/l), these differences were not observed.

Lead content (unspecified compounds) of milk collected at various time points during the day did not differ (Ste85) nor did the lead content of milk collected 3 or 6 months post partum (mean 2 μ g/l, range 0.5-9.0 μ g/l) (Lar81). However, colostrum contained about 1.5-1.7 times more lead than mature milk (Ste85). Other European studies showed mean concentrations of lead in breast milk of 21 μ g/l (Moo82), 4.1 μ g/l (Kov84), 2.6 μ g/l (Sch88), 16.8 μ g/l (Par91) and 35.8 μ g/l (Plo93) (overall range 0-70.3 μ g/l). Milk samples were taken between 2 days and 8 weeks post partum.

North-America

Mean lead (unspecified) content in breast milk obtained from North-American women amounted to 20 μ g/l (Lam73), 10.9 μ g/l (Pin73), 26 μ g/l (Dil74), 2.8 μ g/l (Roc84), 17 μ g/l (Rab 85) and 0.57 μ g/l (Dab86) (overall range 0-72 μ g/l). Samples were taken up to 16 months of lactation. Breast milk of mothers of full-term or premature infants did not differ in lead content (0-4 μ g/l) (Fri99).

Oceania

Two studies in the area of Oceania were performed. Casey *et al.* (Cas77) did not found lead (unspecified) levels in milk above the detection limit (10 μ g/l) in breast milk collected on day 4-10 of lactation of women in New-Zealand. Gulson *et al.* (Gul89) found a mean lead level as low as 0.73 μ g/l (range 0.09-3.1 μ g/l) in breast milk of Australian immigrant women.

Asia

Women living in heavily polluted areas of Bangkok produced breast milk containing 84.6 μ g Pb/l (range 13.6-222.23 μ g/l) (Cha78). Breast milk of Malaysian (Ong85), Phillippinian (Par91) and Indian (Tri99) women contained 47.7, 16.6 and 1.9 μ g Pb/l (overall range 0-105.7 μ g/l), respectively. The lead (unspecified) level in breast milk of rural and urban women in Malaysian differed significantly (21.1 versus 25.3 μ g Pb/l) (Hua83). Parr *et al.* (Par91) did not find any differences in lead content of breast milk of women from different socio-economical classes in Malaysia.

Africa

Average concentrations of lead (unspecified) in breast milk of women in 20 urban and rural areas in Egypt amounted to 9.0-101.4 μ g/l (individual range 0-158 μ g/l) with highest concentration in urban areas (Sal96). Breast milk of women living in Nigeria and Zaire contained 4.9 and 5.0 μ g Pb/l (Par91). No differences were found in milk samples obtained from women from different socio- economical classes.

South America

Only one report was available regarding lead (unspecified) levels in breast milk of women living on the South American continent. Parr *et al.* (Par91) found a mean lead level of 2.9 μ g/l in breast milk of women from Guatemala. No differences were found in breast milk lead levels of women from different socio economical classes.

2.4 Animal studies

Quite a number of papers on the effects of lead exposure on reproduction are available. However, studies are performed with lead salts (predominantly lead acetate and lead nitrate) rather than with metallic lead. Moreover, in a number of papers, the exact entity of lead used for exposure is unclear.

Fertility studies

Animal studies regarding metallic lead exposure and fertility were not available.

Developmental toxicity

Sharma *et al.* (Sha76) dosed 12 Columbia-Rambouillet cross-bred ewes daily with 0.5 to 16 mg/kg (unspecified) lead in the diet to maintain a BLL of approximately 400 μ g/l. Three days after starting the experiment a Dorset ram was turned into the group every morning and evening. The rate of abortions in exposed and unexposed animals was 27 and 0%, respectively. The rate of lambing in the exposed and unexposed sheep was 18 and 100%, respectively. Three animals in the exposed group either did not conceive or their foetuses were resorbed; two others were nongravid. One sheep contained a mummified fetus in the uterus on postmortem examination. Aborted and born foetuses/ lambs in the exposed group were all without apparent abnormalities.

Lactation

No publications were available.

2.5 Conclusion

In general, metallic lead is considered to belong to the group of inorganic lead compounds. Fertility effects found after male exposure to lead (unspecified compounds) included decreased intercourse frequency (Bra78, Cul84), reduced likelihood to have any children (Lin96), increased rate of spontaneous abortions (AlH86), slightly increased time to pregnancy (Sal00) and effects on sperm/spermatogenesis (Lan75, Bra78, Wil83, Cho86, Ass87, Ler92, Hu92, Ale96). On the hormonal level, effects were observed on testosterone (Bra78, Rod88, Ng91), LH (Cul84, Rod88, Gus89, Ng91), FSH (Cul84, Ass87, Rod88, Gus89, Ng91), prolactin, thyroxin and cortisol (Cul84, Gov87, Gus89), however, these results were not always consistent. In the only human

study regarding reproduction and female exposure to lead no effects on fertility and time to pregnancy were observed (Sal95).

Animal data concerning exposure to pure metallic lead and effects on fertility were not available.

The committee concludes that several effects on fertility were described in humans after exposure to (unspecified) lead compounds. However, these effects were not always consistent. In addition, the European Union has already classified the inorganic lead compounds in category 3. Because the committee assumes that exposure to metallic lead always involves exposure to other inorganic lead compounds, the committee recommends to classify metallic lead for effects on fertility in category 3 (substances which cause concern for human fertility).

Kristensen *et al.* (Kri93) found a significantly increased risk for male offspring with cleft lip and/or palate of fathers exposed to both lead and solvents. Lead exposure was also associated with an increased risk of death in the perinatal period. McMichael *et al.* (Mc86) found the relative risk for preterm delivery to be increased with maternal BLLs>140 μ g/l. Fahim *et al.* (Fah76) showed maternal and foetal BLLs to be 2-4 times higher for preterm and term pregnancies with premature rupture compared to normal term pregnancies. However, this was unrelated to the presence or absence of a lead smelter in the area. Wigg *et al.* (Wig88) found Bayley's Mental Development Index at 24 months of age negatively correlated to maternal BLLs at 20 weeks of gestation.

A child with very high BLLs, described in a case report, performed within normal limits on the same psychometric tests. However, according to two behavioural scales, the child was hyperactive and easily distracted.

One animal study was available in which ewes received (unspecified) lead through the diet, resulting in an increased abortion rate and a decreased lambing rate (Sha76).

In conclusion, several effects on development were found in humans after exposure to (unspecified) lead. Moreover, the European Union has classified the inorganic lead compounds in category 1. Because the committee assumes that exposure to metallic lead always involves exposure to other inorganic lead compounds, the committee recommends to classify metallic lead for effects on development in category 1 (substances known to cause developmental toxicity in humans).

In several studies (Ryu78, Nam93, Pal95), mean (unspecified) lead levels in breast milk were determined after exposure to specified (known) sources. These lead levels in breast milk ranged up to 350 μ g/l (Ryu78, Nam93, Pal95). These levels exceeded the calculated acceptable level of 16 μ g/l breast milk. Because the committee assumes that exposure to metallic lead always involves exposure to other inorganic lead compounds,

the committee recommends to label metallic lead for effects during lactation with R64 (may cause harm to breastfed babies)*.

Proposed classification for fertility

Category 3

Proposed classification for developmental toxicity

Category 1

Proposed labelling for effect during lactation

R64

The committee is of the opinion that all inorganic lead compounds should be labelled with R64.

*

References

Ale96	Alexander BH, Checkoway H, Van Netten C, Muller CH, Ewers TG, Kaufman JD, Mueller BA, Vaughan
	TL, Faustman EM. Semen quality of men employed at a lead smelter. Occup. Environ. Med. 1996; 53: 411-
	416.
AlH86	Al-Hakkak ZS, Hamany HA, Murad AMB, Hussain AF. Chromosome aberrations in workers at a storage
	battery plant in Iraq. Mut. Res. 1986; 171: 53-60.
Ass87	Assennato G, Paci C, Baser ME, Molinini R, Gagliano Candela R, Altamura BM, Giorgiono R. Sperm count
	suppression without endocrine dysfunction in lead-exposed men. Arch. Environ. Health 1987; 42: 124-127.
ATS97	Agency for Toxic Substances and Disease Registry. Toxicological profile for lead (update). 1997.
Bra78	Braunstein GD, Dahlgren J, Loriaux DL. Hypogonadism in chronically lead-poisoned men. Infert. 1978; 1:
	33-51.
Cas77	Casey CE. The content of some trace elements in infant milk foods and supplements available in New
	Zealand. New Zealand Med. J. 1977: 275-278.
Cha87	Chatranon W, Chavalittamrong B, Kritalugsana S, Pringsulaka P. Lead concentrations in breast milk at
	various stages of lactation. Souteast Asian J. Trop. Med. Pub. Health 1978; 9: 420-422.
Cho86	Chowdhury AR, Chinoy NJ, Gautam AK, Rao RV, Parikh DJ, Shah GM, Highland HN, Patel KG,
	Chatterjee BB. Effect of lead on human semen. Adv. Contracept. Deliv. Syst. 1986; 2: 208-210.
Cos91	Coste J, Mandereau L, Pessione F, Bregu M, Faye C, Hemon D, Spira A. Lead-exposed workmen and
	fertility: a cohort study on 345 subjects. Eur. J. Epidemiol. 1991; 7: 154-158.
Cul84	Cullen MR, Kayne RD, Robins JM. Endocrine and reproductive dysfunction in men associated with
	occupational inorganic lead intoxication. Arch. Environ. Health 1984; 39: 431-440.
Dab86	Dabeka RW, Karpinski KF, McKenzie AD, Badjik CD. Survey of lead, cadmium and fluoride in human
	milk and correlation of levels with environmental and food factors. Fd. Chem. Toxicol. 1986; 24: 913-921.

Dil74	Dillon, HK, Wilson DJ, Schaffner W. Lead concentrations in human milk. Am. J. Dis. Child. 1974; 128:
	491-492.

- End92 Ende M, Hille A. Bericht über die in Niedersachsen von 1987-1990 durchgeführten
 Muttermilchuntersuchungen. Niedersächsiches Ministerium für Ernährung, Landwirtschaftund Forsten,
 Hannover. 1992. UB/TIB Hannover 89-111 351 723.
- FAO93 Evaluation of certain food additives and contaminants. Forty-first reprot of the Joint FAO/WHO Expert Committee on Food Additives (JECFA). Geneva. World Health Organisation. 1993. (Technical Report Series 837).
- FAO94 FAO/WHO Summary of Evaluations Performed by the Joint FAO/WHO Expert Committee on Food Additives (JECFA). 1994. ILSI Press, USA.
- Fac91 Factor-Litvak P, Graziano JH, Kline JK, Popovac D, Mehmet A, Ahmedi G, Shrout P, Murphy MJ, Gashi E, Haxhiu R, Rajovic L, Nenezic DU, Stein ZA. A prospective study of birth weight and length of gestation in a population surrounding a lead smelter in Kosovo, Yugoslavia. Int. J. Epidemiol. 1991; 20: 722-728.
- Fahim MS, Fahim Z, Hall DG. Effects of subtoxic lead levels on pregnant women in the state of Missouri.Res. Comm. Chem. Pathol. Pharmacol. 1976; 13: 309-331.
- Fis87 Fischer-Fischbein J, Fischbein A, Melnick HD, Barding CW. Correlation between biochemical indicators of lead exposure and semen quality in a lead-poisoned firearms instructor. JAMA 1987; 257: 803-805.
- Friel JK, Andrews WL, Jackson SE, Longerich HP, Mercer C, McDonald A, Dawson B, Sutradhar B.
 Elemental composition of human milk from mothers of premature and full-term infants during the first 3 months of lactation. Biol. Trace El. Res. 1999; 67: 225-247.
- Frk97 Frkovi A, Kraš M, Alebi -Jureti A. Lead and cadmium content in human milk from the northern Adriatic area of Croatia. Bull. Environ. Contam. Toxicol. 1997; 58: 16-21.
- Ge92a Gennart J-P, Bernard A, Lauwerys R. Assessment of thyroid, testes, kidney and autonomic nervous system function in lead-exposed workers. Int. Arch. Occup. Environ. Health 1992; 64: 49-57.
- Ge92b Gennart J-P, Buchet J-P, Roels H, Ghyselen P, Ceulemans E, Lauwerys R. Fertility of male workers exposed to cadmium, lead or manganese. Am. J. Epidemiol. 1992; 135: 1208-1219.
- Gov87 Govoni S, Battaini F, Fernicola C, Castelletti L, Trabucchi M. Plasma prolactin concentrations in lead exposed workers. JEPTO 1987; 4: 13-16.
- Gul98 Gulson BL, Jameson CW, Mahaffey KR, Mizon KJ, Patison N, Law AJ, Korsch MJ, Salter MA.
 Relationships of lead in breast milk to lead in blood, urine, and diet of the infant and mother. Environ.
 Health Persp. 1998; 106: 667-674.
- Gus89 Gustafson Å, Hedner P, Schütz A, Skerfving S. Occupational lead exposure and pituitary function. Int. Arch. Occup. Environ. Health 1989; 61: 277-281.
- Hu WY, Wu SH, Wang LL, Wang GI, Fan H, Liu ZM. A toxicological and epidemiological study on reproductive functions of male workers exposed to lead. J. Hyg. Epidemiol. Microbiol. Immun. 1992; 1: 25-30.
- Huat LH, Zakariya D, Eng KH. Lead concentrations in breast milk of Malaysian urban and rural mothers.
 Arch. Environm. Health. 1983; 38: 205-209.

IPC95	International Programme on Chemical Safety. World Health Organisation. Environmental Health Criteria 165. Inorganic lead. 1995.
Kov84	Kovar IZ, Strehlow CD, Richmond J, Thompson MG. Perinatal lead and calcium burden in a British urban
	population. Arch. Dis. Childh. 1984; 59: 36-39.
Kri93	Kristensen P, Irgens LM, Kjersti Daltveit A, Andersen A. Perinatal outcome among children of men
	exposed to lead and organic solvents in the printing industry. Am. J. Epidemiol. 1993; 137: 134-144.
Lam73	Lamm S, Cole B, Glynn K, Ullmann W. Lead content of milks fed to infants-1971-1972. New Eng. J. Med.
	1973:574-575.
Lan75	Lancranjan I, Popescu HI, G v nescu O, Klepssch I, Serb nescu M. Reproductive ability of workmen
	occupationally exposed to lead. Arch. Environ. Health 1975; 30: 396-401.
Lar81	Larsson B, Slorach SA, Hagman U, Hofvander Y. WHO collaborative breast feeding study II. Levels of lead
	and cadmium in Swedish human milk, 1978-1979. Acta Pædiatr. Scand. 1981; 70: 281-284.
Ler92	Lerda D. Study of sperm characteristics in persons occupationally exposed to lead. Am. J., Ind. Med. 1992;
	22: 567-571.
Lin96	Lin S, Hwang S-A, Marshall EG, Stone R, Chen J. Fertility rates among lead workers and professional bus
	drivers: a comparative study. Ann. Epidemiol. 1996; 6: 201-208.
Lin91	Lindbohm M-L, Sallmén M, Anttila A, Taskinen H, Hemminki K. Paternal occupational lead exposure and
	spontaneous abortion. Scan. J. Work Environ. Health 1991; 17: 95-103.
Mc86	McMichael AJ, Vimpani GV, Robertson EF, Baghurst PA, Clark PD. The Port Pirie cohort study: maternal
	blood lead and pregnancy outcome. J. Epidemiol Comm. Health 1986; 40: 18-25.
Mc88	McMichael AJ, Baghurst PA, Wigg NR, Wimpani GV, Robertson EF, Roberts RJ. Port Pirie cohort study:
	environmental exposure to lead and children's abilities at the age of four years. N. Eng. J. Med. 1988; 319:
	468-475.
Moo82	Moore MR, Goldberg A, Pocok SJ, Meredith A, Stewart IM, MacAnespie H, Lees R, Low A. Some studies
	of maternal and infant lead exposure in Glasgow. Scot. Med. J. 1982; 27: 113-122.
Mur90	Murphy MJ, Graziano JH, Popovac D, Kline JK, Mehmeti A, Factor-Litvak, Ahmedi G, Shrout P, Rajovic
	B, Nenezic D, Stein ZA. Past pregnancy outcomes among women living in the vicinity of a lead smelter in
	Kosovo, Yugoslavia. Am. J. Publ. Health. 1990; 80: 33-35.
Nam93	Namihira D, Saldivar L, Pustilnik N, Carreon GJ, Salinas ME. Lead in human blood andmilk from nursing
	women living near a smelter in Mexico City. J. Toxicol. Environm. Health. 1993; 38: 225-232.
Ng91	Ng TP, Goh HH, Ng YL, Ong HY, Ong CN, Chia KS, Chia SE, Jeyaratnam J. Male endocrine functions in
	workers with moderate exposure to lead. Brit. J. Ind. Med. 1991; 48: 485-491.
Noi67	Noirfalise A, Heusghem C, Legros J. Tenuer en plomb du lait humain et de ses produits de substitution.
	Arch. Belg. Med. Soc. Hyg. Med. Trav. Med. Leg. 1967; 25: 73-79.
Ong85	Ong CN, Phoon WO, Law HY, Tye CY, Lim HH. Concentrations of lead in maternal blood, cord blood, and
D 105	breast milk. Arch. Dis. Childh. 1985; 60: 756-759.
Pal95	Palminger Hallén I, Jorhem L, Json Lagerkvist B, Oskarsson A. Lead and cadmium levels in human milk
	and blood. Sci. Total Environ. 1995; 166: 149-155.

- Par91 Parr RM, De Mayer EM, Iyengar VG, Byrne AR, Kirkbright GF, Schöch G, Niinistö L, Pineda O, Vis HL,
 Hofvander Y, Omololu A. Minor and trace elements in human milk from Guatemala, Hungary, Nigeria,
 Philippines, Sweden, and Zaire. Biol. Trace Elem. Res. 1991; 29: 51-75.
- Pin73 Pinkerton C, Hammer DI, Bridbord K, Creason JP, Kent JL, Murthy GK. Human milk as a dietary source of cadmium and lead. In Hemphill DD (ed) Trace substances in environmental health. Columbia, Mo, University of Missouri Press, 1973; 6: 39-43.
- Plö93 Plöckinger B, Dadak C, Meisinger V. Blei, Queksilver und Cadmium bei Neugeborenen und deren Müttern.Z. Geburtsh. Perinat. 1993; 197: 104-107.
- Rab85 Rabinowitz M, Leviton A, Needleman H. Lead in milk and infant blood: a dose-response model. Arch. Environ. Health. 1985; 40: 283-286.
- Roc84 Rockway SW, Weber CW, Lei KY, Kemberling SR. Lead concentrations of milk, blood and hair in lactating women. Int. Arch. Occup. Environ. Health. 1984; 53: 181-187.
- Rod88 Rodamilans M, Osaba JM, To-Figueras J., Rivera Fillat F, Marques JM, Pérez P, Corbella J. Lead toxicity on endocrine testicular function in an occupationally exposed population. Human Toxicol. 1988; 7: 125-128.
- Rot92 Rothenberg SJ, Schnaas-Arrieta L, Ugartechea JC, Perroni-Hernandez E, Perez-Guerrero IA, Cansino-Pritz S, Salinas V, Zea-Prado F, Chicz-Demet A. A documented case of perinatal lead poisoning. Am J. Publ. Health 1992; 82: 613-614.
- Ryu JE, Ziegler EE, Fomon SJ. Maternal lead exposure and blood lead concentration in infancy. J. Pediat. 1978; 93: 476-478.
- Sal96 Saleh MA, Ragab AA, Kamel A, Jones J, El-Sabae AK. Regional distribution of lead in human milk from Egypt. Chemosphere 1996; 32: 1859-1867.
- Sal92 Sallmén M, Lindbohm M-L, Antilla A, Taskinen H, Hemminki K. Paternal occupational lead exposure and congenital malformations. J. Epidemiol. Comm. Health. 1992; 46: 519-522.
- Sal95 Sallmén M, Antilla A, Lindbohm M-J, Kyyronen P, Taskinen H, Hemminki K. Time to pregnancy among women occupationally exposed to lead. J. Occ. Environm. Med. 1995; 37: 931-934.
- Sal00 Sallmén M, Lindbohm M-L, Antilla A, Taskinen H, Hemminki K. Time to pregnancy among the wives of men occupationally exposed to lead. Epidemiol. 2000; 11: 141-147.
- Sha76 Sharma RM, Buck WB Effects of chronic lead exposure on pregnant sheep and their progeny. Vet. Toxicol. 1976; 18: 186-188.
- Sch88Schramel P, Hasse S, Ovcar-Pavlu J. Selenium, cadmium, lead, and mercury concentration in human breast
milk, in placenta, maternal blood, and the blood of the newborn. Biol. Trace Elem. Res. 1988; 15: 111-124.
- Ste85 Sternowsky HJ, Wessolowski R. Lead and cadmium in breast milk. Arch. Toxicol. 1985; 57: 41-45.
- Tir94 Tiran B, Rossipal E, Tiran A, Karpf E, Lorenz O. Burden of cadmium and lead content in human milk and milk formulas in Styria, Austria. Trace Elem. Electrol. 1994; 11: 42-45.
- Tri99 Tripathi RM, Raghunath R, Sastry VN, Krishnamoorthy TM. Daily intake of heavy metals by infants through milk and milk products. Sci. Total Environ. 1999; 227: 229-235.
- Vav97 Vavilis D, Bontis J, Agorastos T, Angelikakis G, Zournatzi V, Loufopoulos A, Constantinou A, Patsourou A.
 Lead concentrations in early human milk of urban and rural mothers. Clin. Exp. Obst. Gyn. 1997; 24: 198-199.

- Wan B-J, Zhang Y, Tian C-Y, Cai Y, Jiang H-B. Blood lead dynamics of lead-exposed pregnant women and its effects on fetus development. Biom. Environ. Sci. 1996; 9: 41-45.
- Wig88 Wigg NR, Vimpani GV, McMichael AJ, Baghurst PA, Robertson EF, Roberts RJ. Port Pirie cohort study: childhood blood lead and neuropsychological development at age two years. J. Epidemiol. Comm. Health 1988; 42: 213-219.
- Wil83 Wildt K, Eliasson R, Berlin M. Effects of occupational exposure to lead on sperm and semen. In
 Reproductive and developmental toxicity of metals. Clarkson TW, Nordberg GF, Sager P (eds.) New York:
 Plenum Press. 1983: 279-300

Literature consulted but not cited

- Aba97 Abadin HG, Hibbs BF, Pohl HR. Breast-feeding exposure of infants to cadmium, lead, and mercury: a public health viewpoint. Toxicol. Indust. Health 1997; 13: 495-517.
- Angle CR, McIntire MS. Lead poisoning during pregnancy. Am. J. Dis. Child. 1964; 108: 436-439.
- Ang82 Angell NF, Lavery JP. The relationship of blood lead levels to obstetric outcome. Am. J. Obstet. Gynecol. 1982; 142: 40-46.
- Bag91 Baghurst PA, Robertson EF, Oldfield RK, King BM, McMichael AJ, Vimpani GV, Wigg NR. Lead in the placenta, membranes, and umbilical cord in relation to pregnancy outcome in a lead-smelter community. Environ. Health Persp. 1991; 90: 315-320.
- Bau96 Baum CR, Shannon MW. Lead in breast milk (letter to the editor). Pediatrics. 1996; 97: 932.
- Bellinger D, Leviton A, Needleman HL, Waternaux C, Rabinowitz M. Low-level lead exposure and infant development in the first year. Neurobeh. Toxicol. Teratol. 1986; 8: 151-161.
- Bellinger D, Leviton A, Sloman J. Antecedents and correlates of improved cognitive performance in children exposed in utero to low levels of lead. Environm. Health Pers. 1990; 89: 5-11.
- Bellinger DC, Needleman HL, Leviton A, Waternaux C, Rabinowitz MB, Nichols ML. Early sensory-motor development and prenatal exposure to lead. Neurobehav. Toxicol. Teratol. 1984; 6: 387-402.
- Bellinger D, Leviton A, Waternaux C, Needleman H, Rabinowitz M. Longitudinal analyses of prenatal and postnatal lead exposure and early cognitive development. New Eng. J. Med. 1987; 316: 1037-1043.
- Bel91 Bellinger D, Leviton A, Rabinowitz M, Allred E, Needleman H, Schoenbaum S. Weight gain and maturity in fetuses exposed to low levels of lead. Environm. Res. 1991; 54: 151-158.
- Bel94 Bellinger D, Leviton A, Allred E, Rabinowitz M. Pre- and postnatal lead exposure and behavior problems in school-aged children. Environ. Res. 1994; 66: 12-30.
- Bel91 Bellinger D, Sloman J, Leviton A, Rabinowitz M, Needleman HL, Waternaux C. Low-level lead exposure and children's cognitive function in the preschool years. Pediatrics 1991; 87: 219-227.
- Bel92 Bellinger DC, Stiles KM Epidemiological approaches to assessing the developmental toxicity of lead. Neurotoxicol. 1992; 14: 151-160.
- Bor99 Borja-Aburto VH, Hertz-Picciotto I, Rojas Lopez M, Farias P, Rios C, Blanco J. Blood lead levels measured prospectively and risk of spontaneous abortion. Am. J. Epidemiol. 1999; 150: 590-597.

Bor89	Bornschein RL, Grote J, Mitchell T, Succop PA, Dietrich KN, Krafft KM, Hammond PM. Effects of prenatal lead exposure on infant size at birth. In Lead exposure and child development: an international assessment, Smith M, Grant LD, Sors A, eds. MTP Press, Lancaster, UK, 307-319.
Cam99	Campagna D, Huel G, Girard, F, Sahuquillo J, Blot P. Environmental lead exposure and activity of -
Chi92	aminolevulinic acid dehydratase (ALA-D) in maternal and cord blood. Toxicol. 1999;134: 143-152. Chia S-E, Ong CN, Lee ST, Tsakok FHM. Blood concentrations of lead, cadmium, mercury, zinc, and copper and human semen parameters. Arch. Androl. 1992; 29: 177-183.
Coo89	Cooney GH, Bell A, McBride W, Carter C. Neurobehavioural consequences of prenatal low level exposures to lead. Neurotoxicol. Teratol. 1989; 11: 95-104.
Dab89	Dabeka R.W. Survey of lead, cadmium, cobalt and nickel in infant formulas and evaporated milks and estimation of dietary intakes of the elements by infants 0-12 months old. Sci. Tot. Environm. 1989; 89: 279-289.
Daw85	Dawson EB, Titter S, Harris WA, Powell LC. Heavy metal toxicity on sperm in healthy men. Fed. Prod. 1985; 44: 497.
Die87	Dietrich KN, Krafft KM, Bornschein RL, Hammond PB, Berger O, Succop PA, Bier M. Low-level exposure effect on neurobehavioral development in early infancy. Pediatrics 1987; 80: 721-730.
Die89	Dietrich KN, Krafft KM, Bier M, Berger O, Succop PA, Bornschein RL. Neurobehavioural effects of foetal lead exposure: the first year of life. In Lead exposure and child development: an international assessment, Smith M, Grant LD, Sors A, eds. MTP Press, Lancaster, UK, 320-331.
Die90	Dietrich KN, Succop PA, Bornschein RL, Krafft KM, Berger O, Hammond PB. Buncher CR. Lead exposure and neurobehavioral development in later infancy. Environ. Health Persp. 1990; 89: 13-19.
Die91	Dietrich KN, Succop, PA, Berger OG, Hammond PB, Bornschein RL. Lead exposure and the cognitive development of urban preschool children: the Cincinnati lead study cohort at age 4 years. Neurotox. Teratol. 1991; 13: 203-211.
Die92	Dietrich KN, Succop PA, Berger OG, Keith RW. Lead exposure and the central auditory processing abilities and cognitive development of urban children: the Cincinnati lead study cohort at age 5 years. Neurotox. Teratol. 1992; 14: 51-56.
Die93a	Dietrich KN, Berger OG, Succop PA, Hammond PB, Bornschein RL. The developmental consequences of low to moderate prenatal and postnatal lead exposure: intellectualattainment in the Cincinnati lead study cohort following school entry. Neurotoxicol. Teratol. 1993; 15: 37-44.
Die93b	Dietrich KN, Berger OG, Succop PA. Lead exposure and the motor developmental status of urban six-year- old children in the Cincinnati prospective study. Pediatrics 1993; 91: 301-307.
Ern85	Ernhart CB, Wolf AW, Sokol RJ, Brittenham GM, Erhard P. Fetal lead exposure: Antenatal factors. Environ. Res. 1985; 38: 54-66.
Ern86	Ernhart CB, Wolf AW, Kennard MJ, Erhard P, Filipovich HF, Sokol RJ. Intrauterine exposure to low levels of lead: the status of the neonate. Arch. Environ. Health 1986; 41: 287-291.
Ern87	Ernhart, CB, Morrow-Tlucak M, Marler MR, Wolf AW. Low level lead exposure in the prenatal and early preschool periods: early preschool development. Neurotoxicol. Teratol. 1987; 9: 259-270.

- Ern89 Ernhart CB, Morrow-Tlucak M, Wolf AW, Super D, Drotar D. Low level lead exposure in the prenatal and early preschool periods: intelligence prior to school entry. Neurotoxicol. Teratol. 1989; 11: 161-170.
- Ern90 Ernhart CB, Greene T. Low-level exposure in the prenatal and early preschool periods: language development. Arch. Envir. Health. 1990; 45: 342-354.
- Fer81 Fernando NP, Healy MA, Aslam M, Savis SS, Hussein A. Lead poisoning and traditional practices: the consequences for world health. A study in Kuwait. Publ. Health Lond. 1981; 95: 250-260.
- Ger92 Gerhard I, Runnebaum B. Schadstoffe und Fertilitätsstörungen Schwermetalle und Mineralstoffe. Geburtsh. U. Frauenheilk. 1992; 52: 383-396.
- Gon97 González-Cossío T, Peteron KE, Sanín L-H, Fishbein E, Palazuelos E, Aro A, Hernández-Avila M, Hu H. Decrease in birth weight in relation to maternal bone-lead burden. Pediatrics 1997; 100: 856-862.
- Gra90 Graziano JH, Popovac D, Factor-Litvak P, Shrout P, Kline J, Murphy MJ, Zhao YH, Mehmeti A, Ahmedi X,
 Rajovic B *et al.* Determinants of elevated blood lead during pregnancy in a population surrounding a lead
 smelter in Kosovo, Yugoslavia. Environ. Health Persp. 1990; 89: 95-100.
- Gre91 Greene T, Ernhart CB. Prenatal and preschool age lead exposure: relationship with size. Neurotoxicol. Teratol. 1991; 13: 417-427.
- Hasshke F, Steffan I. Die Bleibelastung des jungen Säuglings mit der Nahrung in den Jahren 1980/81.Wiener klin. Wochenschr. 1981; 93: 613-616.
- Hu98 Hu H. Bone lead as a new biologic marker of lead dose: recent findings and implication for public health. Environ. Health Persp. 1998; 106: 961-967.
- Hue92 Huel, G, Tubert P, Frery N, Moreau T, Dreyfus J. Joint effect of gestational age and maternal lead exposure on psychomotor development of the child at six years. Neurotox. 1992; 13: 249-254.
- Jac76 Jaquet P, Leonard A, Gerber GB. Action of lead on early divisions of the mouse embryo. Toxicol. 1976; 6: 129-132.
- Jac77 Jacquet P, Gerber GB, Maes J. Biochemical studies in embryos after exposure of pregnant mice to dietary lead. Bull. Environ. Cont. Toxicol. 1977; 18: 271-277.
- Lam74 Lamm SH, Rosen JF. Lead contamination in milks fed to infants: 1972-1973. Pediatrics 1974; 53: 137-145.
- Lev93 Leviton A, Bellinger D, Allred EN, Rabinowitz M, Needleman H, Schoenbaum S. Pre- and postnatal lowlevel lead exposure and children's dysfunction in school. Environ. Res. 1993; 60: 30-43.
- Lew92 Lewis M, Worobey J, Ramsay DS, McCormack MK. Prenatal exposure to heavy metals: effect on childhood cognitive skills and health status. Pediatrics 1992; 89: 1010-1015.
- Mar83 Marlowe M, Errera J. Increased lead and cadmium burdens among mentally retarded children and children with borderline intelligence. Am. J. Ment. Def. 1983; 87: 477-483.
- Mc90 McGregor AJ, Mason HJ. Chronic occupational lead exposure and testicular endocrine function. Hum. Exp. Toxicol. 1990; 9: 371-376.
- Nee84 Needleman HL, Rabinowitz M, Leviton A, Linn S, Schoenbaum S. The relationship between prenatal exposure to lead an congenital anomalies. J. Am. Med. Ass. 1984; 251: 2956-2959.
- Nee90 Needleman HL, Schell A, Bellinger D, Leviton A, Allred EN. The long-term effects of exposure to low doses of lead in childhood. An 11-year follow-up report. N. Eng. J. Med. 1990; 322: 83-88.

Nie86	Niessen KH. Die toxicologische Situation auf dem Gebiet der Säuglings- und Kinderernährung.
	Monatsschr. Kinderheilk. 1986; 134: 403-408.

- Nor78a Nordenson I, Beckman G, Beckman L, Nordström S. Occupational and environmental risks in and around a smelter in northern Sweden. IV. Chormosomal aberrations in workers exposed to lead. Hereditas 1978; 88: 263-267.
- Nor87b Nordström S, Beckman L, Nordenson I. Occupational and environmental risks in and around a smelter in northern Sweden. I. Variations in birth weight. Hereditas 1978; 88: 43-46.
- Nor87b Nordström S, Beckman L, Nordenson I. Occupational and environmental risks in and arounda smelter in northern Sweden. III. Frequencies of spontaneous abortion. Hereditas 1978; 88: 51-54.
- Oskarsson A, Palminger Hallén I, Sundberg J. Exposure to toxic elements via breast milk. Analyst 1995; 120: 756-770.
- Oskarsson A, Palminger Hallén I, Sundberg J, Petersson Grawé K. Risk assessment in relation to neonatal metal exposure. Analyst 1998; 123: 19-23.
- Pal93 Palminger Hallén I, Oskarsson A. Dose dependent transfer of ²⁰³lead to milk and tissue uptake in suckling offspring studied in rats and mice. Pharmacol. Toxicol. 1993; 73: 174-179.
- Prigge E, Greve J. Effects of inhalation exposures alone and in combination with carbon monoxide in nonpregnant and pregnant rats and fetuses II. Effects on -aminolevulinic acid dehydratase activity, hematocrit and body weight. Zbl. Bakt. Hyg., I. Abt. Orig. 1977; B165: 294-304.
- Rec97 Recknor JC, Reigart JR, Darden PM, Goyer RA, Olden K, Richardson MC. Prenatal care and infant lead exposure. J. Pediatr. 1997; 130: 123-127.
- Ric93 Richmond J, Strehlow CD, Chalkley SR. Dietary intake of Al, Ca, Cu, Fe, Pb, and Zn in infants. Brit. J. Biom. Sci. 1993; 50, 178-186.
- Rot94 Rothenberg SJ, Poblano A, Garza-Morales S. Prenatal and perinatal low level lead exposure alters brainstem auditory evoked responses in infants. Neurotoxicol. 1994; 15: 695-700.
- Rot95 Rothenberg SJ, Cansino S, Sepkosko C, Mercado Torres L, Median S, Schnaas L, Poblano A, Karchmer S.
 Prenatal and perinatal lead exposures alter acoustic cry parameters of neonate. Neurotoxicol. Teratol. 1995; 17: 151-160.
- Rot99 Rothenberg SJ, Schnaas L, Perroni E, Hernández RM, Martínez S, Hernández C. Pre- and postnatal lead effect on head circumference: a case for critical periods. Neurotoxicol. Teratol. 1999; 21: 1-11.
- Saa87 Saaranen M, Suistomaa U, Kantola M, Saarikoski S, Vanha-Perttula T. Lead, Magnesium, selenium and zinc in human seminal fluid: comparison with semen parameters and fertility. Human Reprod. 1987; 2: 475-479.
- Sar84 Šari M. Reproduction and exposure to lead. Ann. Acad. Med. 1984; 13: 383-388.
- Sar97 Šari M, Piasek M. Metal exposure studies: role of toxicology and epidemiology in public health policy. Arh. Hig. Rada. Toksikol. 1997; 48: 307-317.
- Sax94 Saxena DK, Sing C, Murthy RC, Mathur N, Chandra SV. Blood and placenta lead levels in an Indian city: a preliminary report. Arch. Environ. Health 1994; 49: 106-110.

Sch98	Schrader SM, Langford RE, Turner TW, Breitenstein MJ, Clark JC, Jenkins BL, LundyDO, Simon SD,
	Weynandt TB. Reproductive function in relation to duty assignments among military personnel. Reprod.
	Toxicol. 1998; 12: 465-468.
Sch86	Schwartz J, Angle C, Pitcher H. Relationship between childhood blood lead levels and stature. Pediatrics
	1986; 77: 281-288.
Shu89	Shukla R, Bornschein RL, Dietrich KN, Buncher CR, Berger OG, Hammond PB, Succop PA. Fetal and
	infant lead exposure: effects on growth in stature. Pediatrics 1989; 84: 604-612.
Shu91	Shukla R, Dietrich KN, Bornschein RL, Berger O, Hammond PB. Lead exposure and growth in the early
	preschool child: a follow-up report from the Cincinnati lead study. Pediatrics 1991; 88: 886-892.
Tak92	Takacs S, Tatar A, Barkai L. Trace elements in the human blood, cerebrospinal and amniotic fluid. Zbl. Hyg.
	1992; 193: 329-341.
Tan99	Tang H-W, Huel G, Campagna D, Hellier G, Boissinot C, Blot P. Neurodevelopmental evaluation of 9-
	month-old infants exposed to low levels of lead in utero: involvement of monoamine neurotransmitters. J.
	Appl. Toxicol. 1999; 19: 167-172.
Tel94	Tellier L, Aronson RA. Lead in breast milk: should mother be routinely screened? Wisconsin Med. J. 1994:
	257-258.
Tot89	Tóth E, Benkóné VZ, Oroszián G, Ulveczky E. Perinatialis vér-ólomszint fokozott ólomexpozíciójú
	városban. Orvosi Hetilap 1989; 130: 2679-2681.
Ume86	Umeyama T, Ishikawa H, Takeshima H, Yoshii S, Koiso K. A comparative study of seminal trace elements
	in fertile and infertile men. Fert. Ster. 1986; 46: 494-499.
War87	Ward NI, Watson R, Bryce-Smith D. Placental element levels in relation to fetal development for
	obstetrically 'normal' births: a study of 37 elements. Evidence for effects of cadmium, lead and zinc on fetal
	growth, and for smoking as a source of cadmium. Int. J. Biosocial Res. 1987; 9: 63-81.
Wil66	Wilson AT. Effects of abnormal lead content of water supplies on maternity patients. Scot. Med. J. 1966; 11:
	73-82.
Win85	Winneke G, Beginn U, Ewert T, Havestadt C, Kraemer U, Krause C, Thron HL, Wagner HM. Comparing
	the effects of perinatal and later childhood lead exposure on neurophysiological outcome. Environ. Res.
	1985; 38: 155-167.
Xu93	Xu B, Chia S-E, Tsakok M, Ong C-N. Trace elements in blood and seminal plasma and their relationships to
	sperm quality. Reprod. Toxicol. 1993; 7: 613-618.
Xue92	Xuezhi J, Youxin L, Yilan W. Studies of lead exposure on reproductive system: a review of work in China.

Biom. Environ. Sci. 1992; 5: 266-275.

A	The committee
В	Comments on the public draft
С	Directive (93/21/EEC) of the European Community
D	Fertility and developmental toxicity studies

E Abbreviations

Annexes

Annex A

The committee

- BJ Blaauboer, *chairman* Toxicologist, Institute for Risk Assessment Sciences, Utrecht
- AM Bongers, *advisor* Ministry of Social Affairs and Employment, Den Haag
- HFP Joosten
 Toxicologist, NV Organon, Department of Toxicology and Drug Disposition, Oss
- D Lindhout professor of Medical Genetics, paediatrician, UMC, Utrecht
- JHJ Copius Peereboom-Stegeman Toxicologist, Catholic University Nijmegen, Nijmegen
- AH Piersma Reproductive toxicologist, National Institute of Public Health and the Environment, Bilthoven
- N Roeleveld Epidemiologist, Catholic University Nijmegen, Nijmegen
- DH Waalkens-Berendsen
 Reproductive toxicologist, TNO Nutrition and Food Research, Zeist
- PJJM Weterings
 Toxicologist, Weterings Consultancy BV, Rosmalen
- ASAM van der Burght, *scientific secretary* Health Council of the Netherlands, Den Haag

The first draft of the present document was prepared by MEM Kuilman and DH Waalkens-Berendsen, from the TNO Nutrition and Food Research in Zeist, by contract with the Ministry of Social Affairs and Employment.

Secretarial assistance: A Aksel. Lay-out: M Javanmardi and J van Kan.

Β

Comments on the public draft

A draft of the present report was released in 2002 for public review. The following persons and organisations have commented on the draft review:

- N van der Vliet, Uzimet BV, Rijswijk
- V Digernes, Federation of Norwegian Process Industries, Norway

С

Directive (93/21/EEC) of the European Community

4.2.3 Substances toxic to reproduction

4.2.3.1 For the purposes of classification and labelling and having regard to the present state of knowledge, such substances are divided into 3 categories:

Category 1:

Substances known to impair fertility in humans

There is sufficient evidence to establish a causal relationship between human exposure to the substance and impaired fertility.

Substances known to cause developmental toxicity in humans

There is sufficient evidence to establish a causal relationship between human exposure to the substance and subsequent developmental toxic effects in the progeny.

Category 2:

Substances which should be regarded as if they impair fertility in humans:

There is sufficient evidence to provide a strong presumption that human exposure to the substance may result in impaired fertility on the basis of:

- Clear evidence in animal studies of impaired fertility in the absence of toxic effects, or, evidence of impaired fertility occurring at around the same dose levels as other toxic effects but which is not a secondary non-specific consequence of the other toxic effects.
- Other relevant information.

Substances which should be regarded as if they cause developmental toxicity to humans:

There is sufficient evidence to provide a strong presumption that human exposure to the substance may result in developmental toxicity, generally on the basis of:

- Clear results in appropriate animal studies where effects have been observed in the absence of signs of marked maternal toxicity, or at around the same dose levels as other toxic effects but which are not a secondary non-specific consequence of the other toxic effects.
- Other relevant information.

Category 3:

Substances which cause concern for human fertility:

Generally on the basis of:

- Results in appropriate animal studies which provide sufficient evidence to cause a strong suspicion of impaired fertility in the absence of toxic effects, or evidence of impaired fertility occurring at around the same dose levels as other toxic effects, but which is not a secondary non-specific consequence of the other toxic effects, but where the evidence is insufficient to place the substance in Category 2.
- Other relevant information.

Substances which cause concern for humans owing to possible developmental toxic effects:

Generally on the basis of:

- Results in appropriate animal studies which provide sufficient evidence to cause a strong suspicion of developmental toxicity in the absence of signs of marked maternal toxicity, or at around the same dose levels as other toxic effects but which are not a secondary non-specific consequence of the other toxic effects, but where the evidence is insufficient to place the substance in Category 2.
- Other relevant information.

4.2.3.2 The following symbols and specific risk phrases apply:

Category 1:

For substances that impair fertility in humans:

T; R60: May impair fertility

For substances that cause developmental toxicity:

T; R61: May cause harm to the unborn child

Category 2:

For substances that should be regarded as if they impair fertility in humans:

T; R60: May impair fertility

For substances that should be regarded as if they cause developmental toxicity in humans:

T; R61: May cause harm to the unborn child.

Category 3:

For substances which cause concern for human fertility:

Xn; R62: Possible risk of impaired fertility

For substances which cause concern for humans owing to possible developmental toxic effects:

Xn; R63: Possible risk of harm to the unborn child.

4.2.3.3 Comments regarding the categorisation of substances toxic to reproduction

Reproductive toxicity includes impairment of male and female reproductive functions or capacity and the induction of non-inheritable harmful effects on the progeny. This may be classified under two main headings of 1) Effects on male or female fertility, 2) Developmental toxicity.

1 *Effects on male or female fertility*, includes adverse effects on libido, sexual behaviour, any aspect of spermatogenesis or oogenesis, or on hormonal activity or physiological response which would interfere

with the capacity to fertilise, fertilisation itself or the development of the fertilised ovum up to and including implantation.

2 Developmental toxicity, is taken in its widest sense to include any effect interfering with normal development, both before and after birth. It includes effects induced or manifested prenatally as well as those manifested postnatally. This includes embrytoxic/fetotoxic effects such as reduced body weight, growth and developmental retardation, organ toxicity, death, abortion, structural defects (teratogenic effects), functional defects, peripostnatal defects, and impaired postnatalmental or physical development up to and including normal pubertal development.

Classification of chemicals as toxic to reproduction is intended to be used for chemicals which have an intrinsic or specific property to produce such toxic effects. Chemicals should not be classified as toxic to reproduction where such effects are solely produced as a non-specific secondary consequence of other toxic effects. Chemicals of most concern are those which are toxic to reproduction at exposure levels which do not produce other signs of toxicity.

The placing of a compound in Category 1 for effects on Fertility and/or Developmental Toxicity is done on the basis of epidemiological data. Placing into Categories 2 or 3 is done primarily on the basis of animal data. Data from *in vitro* studies, or studies on avian eggs, are regarded as 'supportive evidence' and would only exceptionally lead to classification in the absence of *in vivo* data.

In common with most other types of toxic effect, substances demonstrating reproductive toxicity will be expected to have a threshold below which adverse effects would not be demonstrated. Even when clear effects have been demonstrated in animal studies the relevance for humans may be doubtful because of the doses administrated, for example, where effects have been demonstrated only at high doses, or where marked toxicokinetic differences exist, or the route of administration is inappropriate. For these or similar reasons it may be that classification in Category 3, or even no classification, will be warranted.

Annex V of the Directive specifies a limit test in the case of substances of low toxicity. If a dose level of at least 1000 mg/kg orally produces no evidence of effects toxic to reproduction, studies at other dose levels may not be considered necessary. If data are available from studies carried out with doses higher than the above limit dose, this data must be evaluated together with other relevant data. Under normal circumstances it is considered that effects seen only at doses in excess of the limit dose would not necessarily lead to classification as Toxic to Reproduction.

Effects on fertility

For the classification of a substance into Category 2 for impaired fertility, there should normally be clear evidence in one animal species, with supporting evidence on mechanism of action or site of action, or chemical relationship to other known antifertility agents or other information from humans which would lead to the conclusion that effects would be likely to be seen in humans. Where there are studies in only one species without other relevant supporting evidence then classification in Category 3 may be appropriate.

Since impaired fertility may occur as a non-specific accompaniment to severe generalised toxicity or where there is severe inanition, classification into Category 2 should only be made where there is evidence that there is some degree of specificity of toxicity for the reproductive system. If it was demonstrated that impaired fertility in animal studies was due to failure to mate, then for classification into Category 2, it would normally be necessary to have evidence on the mechanism of action in order to interpret whether any adverse effect such as alteration in pattern of hormonal release would be likely to occur in humans.

Developmental toxicity

For classification into Category 2 there should be clear evidence of adverse effects in well conducted studies in one or more species. Since adverse effects in pregnancy or postnatally may result as a secondary consequence of maternal toxicity, reduced food or water intake, maternal stress, lack of maternal care, specific dietary deficiencies, poor animal husbandry, intercurrent infections, and so on, it is important that the effects observed should occur in well conducted studies and at dose levels which are not associated with marked maternal toxicity. The route of exposue is also important. In particular, the injection of irritant material intraperitoneally may result in local damage to the uterus and its contents, and the results of such studies must be interpreted with caution and on their own would not normally lead to classification.

Classification into Category 3 is based on similar criteria as for Category 2 but may be used where the experimental design has deficiencies which make the conclusions less convincing, or where the possibility that the effects may have been due to non-specific influences such as generalised toxicity cannot be excluded.

In general, classification in category 3 or no category would be assigned on an ad hoc basis where the only effects recorded are small changes in the incidences of spontaneous defects, small changes in the proportions of common variants such as are observed in skeletal examinations, or small differences in postnatal developmental assessments.

Effects during Lactation

Substances which are classified as toxic to reproduction and which also cause concern due to their effects on lactation should in addition be labelled with R64 (see criteria in section 3.2.8).

For the purpose of classification, toxic effects on offspring resulting *only* from exposure via the breast milk, or toxic effects resulting from *direct* exposure of children will not be regarded as 'Toxic to Reproduction', unless such effects result in impaired development of the offspring.

Substances which are not classified as toxic to reproduction but which cause concern due to toxicity when transferred to the baby during the period of lactation should be labelled with R64 (see criteria in section 3.2.8). This R-phrase may also be appropriate for substances which affect the quantity or quality of the milk.

R64 would normally be assigned on the basis of:

- a toxicokinetic studies that would indicate the likelihood that the substance would be present in potentially toxic levels in breast milk, and/or
- b on the basis of results of one or two generation studies in animals which in- dicate the presence of adverse effects on the offspring due to transfer in the milk, and/or
- c on the basis of evidence in humans indicating a risk to babies during the lactational period.
 Substances which are known to accumulate in the body and which subsequently may be released into milk during lactation may be labelled with R33 and R64.

D

Fertility and developmental toxicity studies

Table 1.1 Human studies on effects of Pb on fertility

authors	subjects	exposure	design	effect/observations	remarks
occupation	ally exposed m	ien			
Lancran- jan <i>et al.</i> (1975)	exposed men (n=16- 29) and a control group (n=50)	men working at a storage battery plant which were 1) Pb poisoned or showed 2) moderately increased, 3) slightly increased or 4) physiological absorption	physical and toxi- cological examina- tion (Pb levels in blood and urine, analysis of copro- porphyrine and d- ALA levels and total neutral 17-Ks elimination); semen analysis of semen collected after 3 days of abstinence	in all four exposed groups a sig- nificant increase in alterations in spermatogenesis (hypospermia and asthenospermia) was observed; in the three highest exposed groups teratospermia was found no relation was found between total neutral 17-Ks elimi- nation and the level of Pb absorp- tion (groups 1-4)	e

et al.

(1978)

and controls (n=9)

Braunstein Pb poisoned Poisoned men had men (n=6), a 2-11 year (mean Pb exposed 6 year) history of men (n=4) chronic exposure at a secondary Pb smelter. Exposed men worked at the same smelter for

poisoning, 3 of

them had noted

libido and frequency of inter-

present or past his-

tory of excessive

environmental Pb

course.

exposure

testicular biopsies were taken of two out of 6 poisoned men in all groups FSH, LH, TST, estradiol and prolactin were measured and semen samples were 1-23 years (mean taken these param-8.1 years), but had eters were also no clinical signs of determined after administration of clomiphene or some decrease in human chorionic gonadotropin or gonadotropin releasing hormone Controls had no

frequency of intercourse had significantly decreased in both Pb exposed groups compared to controls. BLL at time of testing was 387 and 290 µg/l in the poisoned and exposed group compared to 161 µg/l in the controls. After administration of EDTA only the urine Pb level in the Pb poisoned group was significantly higher than the controls (999.3 vs. 224.6 µg/24°). No significant differences occurred in sperm volume, motility and % abnormal forms between the groups. The biopsies were similar and showed an increase in peritubular connective tissue, a decrease in spermatogenesis and the presence of lipofuscin bodies (degrading lysosomes) in the Sertoli cells. Differences in basal hormone levels were apparent for TST for both Pb exposed groups (lower TST levels in treated groups). Following administration of human chorionic gonadotropin, increment of TST was significantly increased in the Pb poisoned men, following administration of clomiphene the increment of estradiol in both Pb exposed groups was significantly decreased, in poisoned men increment of LH was also decreased; in poisoned men the peak response of LH had decreased after administration of gonadotropin releasing hormone

poisoned men suffered from peripheral neuropathy, saturine gout and encephalopathy and/or recurrent abdominal colicky pains controls were of similar socioeconomic background as the exposed groups mean age did not differ between groups (30-39 years) all poisoned men had been treated with Ca EDTA before the analyses were performed poisoned men were removed from this work for at least 3 months and had received one or more courses of chelation therapy

Table 1.2 Human studies on effects of Pb on fertility

authos	subjects	exposure	design	effects/observations	rem.
Wildt <i>et</i> <i>al.</i> (1983)	Group A: men exposed to Pb (n=31) and Group B: men not exposed to Pb (n=31)	all men worked in a battery factory in Sweden	31 men in group A were matched with 31 men in group B. Semen samples were obtained after 5 days of abstinence in Sep- tember and April and quality was assessed	no difference was noted between the exposed and non-exposed men regarding sperm morphology, count, motility and biochemistry. Of group A, 28% had a low semen volume compared to 4% in group B. 43.5% of group A and 12.5% of group B showed a decreased function of the accesssory genital glands and the statistical analysis showed a significant difference only for zinc spermatozoa from exposed men had a significantly lower resistance against SDS treatment (chromatin stability) than those from the control group	men were matched for age and ethnic and social factors group A: BLL > 0.5 mg/l once in 6 months prior to the study (mean 450 μ g/l); group B: BLL occasionally >0.3 mg/l and ZPP lev- els <0.3 mg/l (mean 220 μ g/l) September was 3 months after the period with lowest exposure in the year and April 3 months after the period with highest exposure in the year
Cullen <i>et</i> <i>al.</i> (1984)	men diag- nosed for Pb intoxi- cation (n=7)	men were shake out man (1), furnace man (2), storage battery worker(3, 7), chemi- cal opera- tor (4) or painter (5, 6), expo- sure ranged from 5 weeks to 15 years	follow-up study patient were exam- ined and patients 1, 3, 4, 5 and 7 were treated with Ca EDTA until BLL were <300 µg/l	<i>case 1</i> (11 y exp) was impotent and had chronic diffuse dermatitis and small testes with a BLL 550 µg/l and a free erythrocyte protoporphyrin of 533 units; sperm was not found in the ejaculate and LH and FSH levels were elevated; <i>case 2</i> (15 y exp) suffered from persistent back pain with BLL of 660 µg/l and a free erythrocyte protoporphyrin of 345 units; sperm count was 18x10 ⁶ /ml with 40% motile sperm; <i>case 3</i> (6 mo exp) was impotent and had developed colic with a BLL of 830 µg/l and ZPP of 285 units; sperm count was 12x10 ⁶ /ml with 11% motile sperm; <i>case 4</i> (2 mo exp) suffered from headaches, abdominal pain and paresthesias in his left arm with BLL 980 µg/l and ZPP 132 units; gonadal function was within the normal range; <i>case 5</i> (5 y exp) had decreased libido, insomnia, arhtralgia and depression with BLL of 700 µg/l and ZPP 222 units; sperm was 25% motile; <i>case 6</i> (5 wk exp) developed colic with a BLL of 900 µg/l and ZPP of 135 units (vasectomized); <i>case 7</i> (7 y exp) had decreased libido, insomnia, intermittent abdominal pains and irritability with a BLL 390 µg/l; slightly small testes of normal texture with no sperm in ejaculate and elevated FSH; <i>cases 1, 2 and 7</i> had defects in thyroid function and except 6, all men had subnormal glucocorticoid production after treatment, case 1 had slightly improved adrenal corticoid function and sperm count rise, case 4 had sperm count drop (due to re-exposure after treatment), case 5 had sperm count rise and case 7 had slightly improved adrenal corticoid function and sperm count rise and case 7 had slightly improved adrenal corticoid function and sperm count rise.	cases men lived in Con- necticut and were between 22 and 43 years of age (mean 35 year) normal free erythrocyte protoporphyrin <40; normal ZPP <28 units; normal sperm count >20 10 ⁶ /ml and % motile >50%

Table 1.3 Human studies on effects of Pb on fertility

authors	subjects	exposure	design	effect/observations	remarks
Chowdh ury <i>et al.</i> (1986)	exposed	exposed men were work- ing at a news- paper printing press and were exposed 8 h/day for 10 years, con- trols were from the administra- tive staff of the same press	semen sam- ples were colleted and physical characteris-	average Pb level in blood and semen of the exposed was 425 and 148 μ g/l, respectively, and significantly higher than in the controls average sperm counts were significantly lower and sperm was less motile, seminal plasma acid phosphatase, succinic dehydrogenase and fructose content was decreased and tail abnormalities of sperm were of marked predominance compared to the controls; volume, pH, colour and viscosity of the semen were unaffected compared to the controls	mean age was 30 years and mean weight was 55 kg, controls were from the same age and body weight group no figures were given in the article, just descrip- tions of the effects Pb levels of the controls were not given
Al- Hakkak <i>et al.</i> (1986)	healthy exposed men (n=22) and a control group (n=22)	exposed men were work- ing at a stor- age battery plant, con- trols were employees of the Scientific Research Council	question- naire sheets on preg- nancy out- come were distributed	the rate of spontaneous abortion (mean num- ber of abortions per family) was significantly higher in the workers' family (1.04) com- pared to that in the controls (0.30) (p<0.01)	controls were matched for sex, age, work, years of service, social status and education BLLs were not measured, but in a paper regarding the same plant, dust samples contained 9725 µg/g and BLLs of exposed and unexposed men amounted to 380-960 µg/l (mean 640 µg/l) and 60-300 µg/l (mean 240 µg/l), respectively
Govoni et al. (1987)	Pb exposed men (n=76)	all men worked in small pewter factories	those regu- larly con- trolled by the NHS blood was taken and analysed	BLLs were 282, 603, 331 and 491 µg/l for group A, B, C and D, respectively ZPP levels were 244, 1310, 770 and 340 µg/l for group A, B, C and D, respectively prolactin levels were 34.4, 50.6, 53.4 and 33.1 µg/l for group A, B, C and D, respec- tively (all prolactin levels are within the nor- mal range) ZPP and prolactin levels were significantly increased in group B and C compared to group A	men were divided into 4 groups: A BLL and ZPP <400 µg/l (n=22) B BLL and ZPP >400 µg/l (n=33) C BLL <, ZPP >400 µg/l (n=13) D BLL >, ZPP <400 µg/l (n=8)

authors	subjects	exposure	design	effects/observations	remarks
Assen- nato <i>et</i> <i>ul.</i> (1987)	exposed men (n=18) and a control group (n=18)	exposed men worked at a storage battery plant (exposure 0.054-0.584 mg Pb/m ³) during 1-10 years con- trol group were cement workers not particularly exposed to Pb	monitoring of exposure, ques- tionnaire, physical examination, semen donation after 3-5 days of abstinence, collec- tion of blood, urine and semen for analyses of Pb, ZPP, TST, prolac- tin, total neutral 17-ks, LH and FSH	cement workers; mean TST, prolactin, total neutral 17- ks, LH and FSH levels were not significantly different the cumulative frequency distribution of battery worker	mean age of both groups was 40-41 year no differences between groups in wine and coffee con- sumption and smok- ing habits
Fis- cher- Fisch- bein <i>et</i> <i>al.</i> (1987)	reduced fertile man (n=1)		man was physi- cally examined, blood Pb and ZPP levels were deter- mined as well as semen quality; the man was hospital- ized for chelation therapy	blood Pb level was 880 μ g/l and blood ZPP level 3.6 mg/ l, after chelating therapy for 6 months blood Pb level had sank to ca. 300 μ g/l and blood ZPP level to 0.3 mg/l, both only slightly sank further during the course of the therapy 2.5 years after starting therapy semen volume had decreased from 1.3 to 0.7 ml, sperm density had increased from 9.6 to 158x10 ⁶ /ml and total sperm count had increased from 12.5 to 110x10 ⁶ / ejaculate; motility had remained equal (50-60%) and the intensity of motil- ity had changed from poor to good; normal morphologi- cal appearance of sperm cells had increased from 40 to 61% and head defects had decreased from 30 to 22% after 1 year of therapy a healthy child was conceived	case man was 41 years of age, having one child from a previous mar- riage and trying to have another child since 2 years man did not smoke and drank alcohol infrequently results of a physical examina- tion were normal
Rodami as <i>et</i> 1/. 1988)	exposed (n=23) and non- exposed (n=20) men	in a Pb smelting works dur-	blood and serum were collected at 8 am and analysed for BLL, serum TST level, red blood cell, ZPP, SBG level and serum LH and FSH levels	BLL increased significantly from 170 μ g/l in control men to ca. 700 μ g/l in all exposed groups; ZPP had sig- nificantly increased in all exposed groups (2.5 vs. 0.19 mg/l); there were no differences between exposed groups for BLL and ZPP serum TST was only significantly lower in the longest exposed group (18.6 vs. 22.9 nmol/l) SBG had significantly increased in the two longest exposed groups to the same extend compared to the con- trol group (34 vs. 25 nmol/l) the free TST index was decreased in the two longest exposed groups (71 and 55% vs. 93%) LH concentration was significantly increased in all exposed groups to the same extend (10 vs. 6 U/l) FSH concentration did not change significantly (5 U/l)	none of the men had clinical symptoms of Pb exposure 1) mean age 30 y (21 44, n=5) 2) mean age 33 y (21 46, n=8) 3) mean age 34 y (22 52, n=10) control men between 20-60 years of age

Table 1.5 Human studies on effects of Pb on fertility

authors	subjects	exposure	design	effects/observations	remarks
Gustafso n <i>et al.</i> (1989)	healthy men exposed (n=25) and non-exposed to Pb (n=25)	exposed men worked at a secondary Pb smelter con- trols were engineering industry workers and post-office employees	matched study BLL was deter- mined as well as LH, FSH, total TST and PRL in plasma and cortisol, TSH, T3, thy- roxine and free TST in serum	BLLs differed significantly between exposed men and controls (390 vs. 50 µg/ l) FSH level was significantly decreased in exposed men compared to controls (3.6 vs. 4.5 U/l) when persons who had taken sele- nium pills* were excluded from the study, the lower FSH in exposed workers was more pronounced, whereas a higher thy- roxine level became significant. as correla- tions existed for age and TST, age and FSH and age and TSH, a subgroup of workers <40 years of age was selected: significant differences existed for thyrox- ine (exposed vs. control, 88 vs 73 nmol/l), FSH (2.9 vs. 4.1 U/l), LH (7.6 vs. 8.9 U/l) and cortisol (295 vs. 382 nmol/l)	average age was 36 and 36.8 years for exposed and control men none of the subjects had any known alcohol or drug prob- lems general health was assessed by liver function and serum urate level men were matched for age and shiftsall values were within the normal range *Pb might influence selenium metabolism
Coste <i>et</i> <i>al.</i> (1991)	fertile men exposed (n=229) and non-exposed (n=125) to Pb (exposed 886 person- years, non- exposed 598 person- years)	men working at a battery factory divided in 4 groups: 1) workpost non-exposed 2) workpost with BLL <400 µg/1 3) workpost with 400 µg/1 BLL 600 µg/1 4) workpost with BLL >600 µg/1	person-year- analysis taking confounders into account; infertility was defined by the non-occur- rence of live birth during one observed year	Pb exposure did not appear to be associ- ated with infertility, in contrast to age >40 years, French origin, primary school edu- cation level and having a child or children	men were aged 20-60 (mean 36.5) and had worked at least 1 year in the factory; average follow-up was 4.1 years and 63% of the subjects was observed for the entire duration of the study confounders taken into account were age, ethnic origin, education level, socio-economic status, no. of previous live births, alcohol consumption, smoking, exposure to heat, working hours and sulfuric acid exposure
Lind- bohm <i>et</i> <i>al.</i> (1991)	men occupa- tionally exposed to Pb and their pregnant wives having had a sponta- neous abor- tion (n=213) or had given normal birth (n=300)	occupation- ally exposed to Pb and worked in numerous	case-referent study question- naire on job and pregnan- cies, data were obtained from medical regis- ters and the Institute of Occupational Health BLLs were as much as possi- ble obtained from the sper- mato- genesis period	Pb exposure in cases and referents did not differ significantly: ca. 25% of the men had BLL <207 µg/l and ca. 2.5% >394 µg/ l BLLs were not found to be related signif- icantly to the incidence of spontaneous abortion in general when only BLLs measured during or close to the time of spermatogenesis were taken into account, an increased risk on sponta- neous abortion was detected for BLL >311 µg/l (OR 3.8, 95% CI 1.2-12)*	* model was adjusted for pater- nal exposure to Cd and Hg, maternal exposure to organic solvents, Hg and alcohol, par- ity, contraception, previous spontaneous abortion and the index of missing information

Table 1.6 Human studies on effects of Pb on fertility

authors	subjects	exposure	design	effects/observations	remarks
Ng et al. (1991)	men exposed (n=122) and non- exposed (n=49) to Pb	exposed men worked in three Pb bat- tery factories (mean 18 mg Pb/m ³) controls were hospital engi- neering and maintenance workers or technicians	BLL and ALAD in erythrocytes analysis was carried out every 6 months start- ing January 1982 (mean 6.2 times) TST, LH, FSH and PRL levels were deter- mined	average BLLs amounted to 352 and 83 µg/l for exposed and control men (p=0.0001) ALAD was 0.45 µM/h/ml RBC in exposed men and 1.25 µM/h/ml RBC in controls (p<0.0001); LH and FSH were significantly increased in exposed men compared to controls (LH 4.59 vs. 3.24 IU/l and FSH 2.52 vs. 1.92 IU/l);TST and PRL did not differ significantly (TST ca. 7 ng/ml, PRL ca. 194 mIU/l); when the groups were divided in men younger than 40 years and 40 years and older, TST was signifi- cantly lower in the exposed group aged 40 years and above than in controls (p<0.01) and LH and FSH were significantly higher in exposed men younger than 40 years compared to controls (p<0.01); PRL did not show any age-specific differences reduced TST and normal LH levels (sec. hypogonadism) were noted in 13.9% of the exposed subjects and 4.1% of the non-exposed subjects (p=0.05); raised LH values with normal TST levels (compensated prim. hypogonadism) were found in 23.8% of the exposed and 6.1% of the non-exposed subjects (p<0.05)	none of the subjects had a history of liver, renal or other recent or chronic diseases or ill- nesses no significant differences in age, smoking and drinking habits existed between the two groups mean age was 34.4 and 32.6 years in non-exposed and exposed groups; mean years of exposure was 6.0
Lerda (1992)	healthy fer- tile men exposed (n=38) and non- exposed (n=30) to Pb	men working at a battery factory grouped according to Pb blood level A) 866 µg/l B) 659 µg/l C) 486 µg/l control 235 µg/l	blood and sperm sam- ples were collected after 4 days of absti- nencelevels of Pb and d- ALA in blood were analysed as well as sev- eral sperm parameters	mean δ -ALA levels in blood were 14.2, 19.4, 24.6 and 39.3 U/l for A, B, C and controls, respec- tivelysperm count (A vs. control, 69.2 vs. 101.5x10 ⁶ /ml), motility (49.0 vs. 70.4%) and death (68.1 vs. 82.9%) had significantly decreased in all exposed groups compared to controls; the percent- age of anomalies had increased significantly (72.5 vs. 33.4%) in all groups	average exposure time 11.7 years mean age 36 years (exposed) and 35 years (controls)
Hu et al. (1992)	men exposed (n=24) and non- exposed (n=24) to Pb	exposed men worked at small print- ing house or battery fac- tory (concen- tration of Pb exceeded 0.03 mg/m ³ all year long), controls were building workers	question- naire; analy- sis of urine Pb level and several semen parameters	mean Pb urine level differed significantly between exposed (87.6 µg/l) and controls (4.2 µg/l) sperm of exposed men contained significantly less cells/ml (56.9 vs. 76.7x10 ⁸ /ml) and significantly more ter- atospermic cells (21.0 vs. 12.3%); sperm motility did not differ significantly between groups; a decreased level of lactate dehydrogenase-x was found in sperm of the exposed group	age, living conditions, smoking and drinking habits and exposure to other toxicants harmful to the reproductive sys- tem did not differ sig- nificantly between the groups

et al. determination and endocrine parameters, total erythrocyte count cant difference in age, exposed were employed in a of several or autonomic nervous system weight, height, smok-(1992a) (n=98) and Pb acid batparameters in ing and drinking habits nonexposed blood and and urinary cadmium tery factory (n=85) to and were urine, and carlevels were observed Pb moderately diac parasymbetween controls and exposed pathic function exposed menblood according to parameters measured their BLL were ZPP, creatinine, (mean 510 µg/ β₂-microglobulin, tril, range 400iodothyronine, thyrox-750 µg/l) for ine, triiodothyroine at least 1 year, resin uptake, TSH, controls FSH, LH urine parameters measured were worked in factories in the ALA, creatinine, retarea and had a inol-binding protein, mean BLL of albumin, β_2 -microglobulin, N-acetyl- b-D-209 µg/l (range 44-390 glucosaminidas; parasympathic function μg/l) was assessed by measuring interval variation between the consecutive R waves on the electrocardiogram Lerda healthy fermen working blood and mean d-ALA levels in blood were 14.2, 19.4, 24.6 average exposure time (1992)tile men at a battery sperm samples and 39.3 U/l for A, B, C and controls, respectively 11.7 years mean age 36 sperm count (A vs. control, 69.2 vs. 101.5x10⁶/ exposed factory were collected years (exposed) and 35 after 4 days of ml), motility (49.0 vs. 70.4%) and death (68.1 vs. (n=38) and grouped years (controls) nonaccording to abstinencelev-82.9%) had significantly decreased in all exposed exposed Pb blood level els of Pb and dgroups compared to controls; the percentage of (n=30) to A) 866 µg/l ALA in blood anomalies had increased significantly (72.5 vs. Pb were analysed B) 659 µg/l 33.4%) in all groups C) 486 µg/l as well as sev-

effects/observations

no effect of Pb could be evidenced on the renal

remarks

no statistically signifi-

Table 1.7 Human studies on effects of Pb on fertility

exposure

exposed men

control 235

μg/l

eral sperm

parameters

design

questionnaire,

authors

Gennart

subjects

men

Table 1.8 Human studies on effects of Pb on fertility

authors	subjects	exposure	design	effects/observations	remarks
Alex- ander <i>et</i> <i>al.</i> (1996)	men (n=12-46)	men work- ing at a Pb smelter	cross sec- tional study blood and	mean blood Pb concentration was 224 μ g/l (range 50-580 μ g/l) geometric mean sperm concentration and total sperm count were	mean age of men 38.2-41.8 years mean years of service 15.7-19.8
		were divided into 4 groups: 1) BLL <150 μg/l 2) BLL 150-240 μg/ l 3) BLL 250-390 μg/ l 4) BLL 400 μg/l	semen sam- ples were collected after 48h of abstinence and analy- sed for Pb level; semen was analy- sed for TST, FSH and LH level	inversely related to BLL; workers with BLL >400 μ g/l had an increased risk of having a below WHO normal sperm concentration and total sperm count also after controlling for several effects* independent of current Pb exposure, sperm concentration, total sperm count and total motile sperm count were inversely related to measures of long term Pb exposure no association was found between Pb exposure and measures of sperm motility and morphology or serum concentrations of reproductive hormones	*alcohol consumption, presence of other metals in blood, period of abstinence, history of reproduction difficulties, use of hot tubs and sau- nas and history of reproductive tract infection
Lin <i>et al.</i> (1996)	Pb exposed (n=4256) and non- exposed men (n=5148)	exposed men were reported to the New York State Heavy Met- als Regis- try; controls were bus drivers licenced in the State of New York	retrospec- tive cohort study Pb exposure was divided into high (500 µg/l), medium (350-490 µg/ l) and low (250-340 µg/ l) BLLs birth certificates were con- sulted	50.4% of the cases reported had low, 39.1% medium and 10.4% high BLLs Pb exposed workers had fewer births than expected (overall SFR 0.88, 95% CI 0.81- 0.95) mean group BLLs were not associated with fertility, but workers with heavy expo- sure (>500 μ g/l and duration of exposure >5 years) were significantly less likely to have any children compared to the control group (ratio 0.4 95% CI 0.2-0.7) as well as any worker with exposure time > 5 years (ratio 0.3, 95% CI 0.2-0.5) (after adjustment for confounders: ratio 0.38, 95% CI 0.23-0.61)	men were matched to age and resi- dence BLLs of bus drivers were not measured no differences exist between groups for distribution of race, wife's age, parity of history of abortion men were registered when BLL 400 μ g/l (1981-1986) or when BLL 250 μ g/l (1986-1992) SFR = standard fertility ratio confounders were education, race and residence

authors	subjects	exposure	design	effects/observations	remarks
Occupatio	onally expos	sed women			
Sallmén <i>et al.</i> (2000)	wives of husband occupa- tionally	were reported to the Finnish	Pb exposure was assessed from blood Pb measure-	24.5% of the men in the study had BLL >207 μ g/l and 4.6% had BLL >394 μ g/l the fecundability density ratios,	paternal exposure was assessed when possible about 80 days before the attempt at pregnancy began
	exposed to Pb (n=502)	Institute of Occupa- tional Health	ments and ques- tionnaires completed by the men. data on wives was obtained from the central population register, TTP was calculated based on data obtained from the women themself	adjusted for potential confounders*, were 0.92 (95% CI 0.73-1.16), 0.89 (0.66-1.20), 0.58 (0.33-0.96) and 0.83 (0.50-1.32) for blood Pb cate- gories 104-186 μ g/l, 207-290 μ g/l, 311-373 μ g/l and >394 μ g/l**	*age of wife, unplanned pregnancy, maternal and paternal life style, use or contraception, menstruational fac- tors, age at menarche, previous preg- nancies, year of pregnancy, frequency of intercourse, pregnancy outcome, maternal exposure to organic sol- vents or Pb, paternal exposure to organic solvents or other metals ** discontinuous categories arise from the translation of µmol/l in the paper to µg/l in this report
Sallmén <i>et al.</i> (1995)	women occupa- tionally exposed to Pb (n=65) and non- exposed women (n=56)	(Finland); women from	based on biologi- cally monitoring, work description and a self-report of exposure, women were divided in four exposure groups; time-to- pregnancy was related to exposure with the discrete proportional haz- ards regression	there were no systematic differences in the distribution of time to preg- nancy between exposed and non- exposed women exposure to Pb was not significantly associated with decreased fecundability (measured as the incidence density ratio which estimates an average ratio of inci- dence densities of pregnancies for exposed women compared with the unexposed through menstrual cycle classes) after adjustment for expo- sure to carcinogens, age, parity, use of alcohol, use of coffee, older age at menarche, vaginitis and fre- quency of intercourse	exposure categories were: not exposed, BLL 100 μg/l, 100 <bll>190 μg/l, BLL 190 μg/l</bll>

Table 1.9 Human studies on effects of Pb on fertility

ALA= -aminolevulinic acid; ALAD = aminolevulnic acid dehydratase; BLL= blood Pb level; FSH= follicle-stimulating hormone; ks= ketosteroid; LH=luteinizing hormone; PRL = prolactin; SHBG = sex hormone binding globulin; SBG = serum steroid binding globulin; T3 = triiodothyronine; TSH=thyroid-stimulating hormone; TST = testosterone; TTP = time to pregnancy; ZPP = zinc proto-porphyrin IX

Table 2.1 Human studies on effects of Pb on development

authors	subjects	exposure	design	effects/observation	remarks
Exposed 1	men				
Sallmén <i>et al.</i> (1992)	children with (n=27) or without (n=57) con- genital mal- formations of Pb exposed and non- exposed men	Pb and had been moni- tored at the	retrospective case con- trol study ata on expo- sure (1973-1983) women and pregnancies and pregnancy outcomes were collected all 18-40 year women with a mal- formed child were defined as cases and matched with 3 times as much age controls cases and controls were divided in 4 groups based on estimated BLLs during 80 d period before conception	80.7% of the controls had a BLL <186 μ g/l and 19.3% had a BLL between 207-290 μ g/l; for the cases 63% and 18.5% were in these first two groups, whereas 14.8% and 3.7% had BLL between 311-373 μ g/l and >394 μ g/l, respectively* the distribution of exposed cases by the type of malformation was heterogeneous and all the five case children of the men in the two highest Pb exposure categories had a different type of malformation the OR of congenital malformations for paternal Pb exposure was increased (OR 2.4, 95% CI 0.9-6.5) though not reaching statistical significance	obtained within 36
Kris- tensen <i>et</i> <i>al.</i> (1993)	men exposed to Pb only (n=1205) and all children born to print- ers (n=6251)	Pb exposed men were involved in several printing tasks (composi- tors, litho- graphers, bookbind- ers)	men were categorised as to their exposure to Pb and solvents, non- exposed employees served as controls; all births that occurred in Oslo during the same period served as an external reference records from the printers union and birth registra- tion were linked	deaths occurring during the perinatal period (including late abortions, stillbirths, early neonatal deaths) were significantly increased for children of the Pb exposed men (adjusted OR 2.4, 95% CI 1.2-4.9) (early) preterm birth, length of gestational age, small for gestational age and low birth weight were not related to Pb exposure the standardized morbidity ratio for boys with fathers exposed to Pb or exposed to Pb and solvents (no distinction was made) was significantly increased for cleft lip (SMR 4.1, 95% CI 1.8-8.1)	

Table 2.2 Human studies on effects of Pb on development

authors	subjects	exposure	design	effects/observation	remarks
Exposed	women				
Fahim <i>et al.</i> (1976)	pregnant women around delivery (n=249- 253)	women liv- ing in the neighbour- hood of a Pb smelter (Rolla, Mis- souri) were compared to women liv- ing in an area without any Pb min- ing activi- ties (Colombia, Missouri)	centa and mem- brane, recording of placenta weight and length and diameter of umbilical cord, morphological and histological examination of placenta, ques- tionnaire regarding preg-	In the area around the smelter 70.0% of the women were term, 17.0% were term with PRM and 13.0% were preterm, in the control area these percentages were 96.4, 0.4 and 3% fetal and maternal BLLs did not differ significantly between the areas, however for both areas BLLs were significantly higher in term with PRM and preterm pregnancies compared to term pregnancies (maternal BLL 256-301 μ g/l vs. 131-143 μ g/l and fetal BLL 96-175 μ g/l vs. 43-46 μ g/l) no differences were observed for ceruloplasmin levels were significantly decreased for both the exposed and control group (98-105 mg/l vs. 175 mg/l) Pb levels in placenta and cord did not differ significantly (placenta 60-90 μ g/kg, cord 90-120 μ g/l) Pb levels in the membrane increased in both exposure groups significantly in preterm and term with PRM compared to term deliveries (ca. 250-400 μ g/kg vs. 50-100 μ g/kg)* no pathological findings in the cell structure were observed in histological sections taken from placenta, cord or membrane	women were between 20 and 22 years of age and living in the subsequent areas for at least 10 years definitions: <u>premature</u> : neonate born before 37 weeks of gestation and weighing less than 2500 g <u>premature rupture of the mem- brane (PRM)</u> : spontaneous rup ture of the membrane before the onset of labour and when labou does not begin within 12 hours *figures are obtained from a graph in the paper
	pregnant mothers and their newborn babies (n=774- 831)			The mean prenatally and perinatally BLLs were in PP women significantly higher than in NP women, except between weeks 21-29 of gestation ($106 \mu g/l vs. 76 \mu g/l$) in NP women 1 woman had a spontaneous abortion, whereas in PP women 22; these were not related to BLL the relative risk for a pre-term delivery increased with maternal BLL and was signifi- cantly increased when BLL >140 $\mu g/l$ (RR 4.4, 95% CI 1.2-16.8) and highest with BLL at delivery although more still births occurred in the PP women ($17.5/1000 vs. 5.8/1000$ live births), still births were negatively associated with individual maternal BLL BLLs were not significantly related to birth weight, crown heel length, head circumfer- ence, premature rupture of membranes, con- genital anomalies or difficulties in conceiving	Port Pirie cohort study age dis- tribution over Port Pirie (PP) and non-Port Pieri (NP) women were similar among PP women 85% had lived there for at leas 3 years, while 79% and 70% had lived there for at least 5 am 10 years, respectively pre-term delivery: birth before the 37 th week, including stillbirths

authors	subjects	exposure	design	effects/observation	remarks
Wigg et al. (1988)	pregnant mothers and their newborn babies (n=497- 523)	all children were born in the city of Port Pirie, a Pb smelter community, or in the sur- rounding agricultural area	BLLs were determined at enrollment of the mothers (at 14-20 weeks of gesta- tion), early in the third trimester, at delivery, from cord, and at postna- tal age 6, 15 and 24 months of age and anu- ally thereafter, at 24 months of age the devel- opmental status of each child was assessed with the Bayley scales	mean BLL of umbilical blood amounted to 83 µg/l the mean MDI was 109.2 and the mean PDI 105.3 MDI was significantly negatively corre- lated with BLL after 20 weeks of gesta- tion but not at delivery nor with cord BLL, PDI was not related with any of the BLLs measured prenatally or around birth	Port Pirie cohort study
McMic hael <i>et</i> <i>al.</i> (1988)	pregnant mothers and their newborn babies (n=537- 463)	all children were born in the city of Port Pirie, a Pb smelter community, or in the sur- rounding agricultural area	see previous study chil- dren were assessed with the McCarthy Scales of Children's Abilities at 4 years of age	mean maternal BLL varied from 91 μ g/l at 16 weeks of gestation to 95 μ g/l at delivery, mean BLL in the cord was 83 μ g/l mean scores for verbal, perceptual performance, quantitative, GCI , memory and motor were 53.5, 56.9, 50.5, 107.1, 48.2 and 53.8 on a 100 (GCI) or 50 (all others) scale antenatal (average) BLL was significantly negatively correlated with GCI and memory scale, whereas BLL at delivery was significantly negatively related to GCI, perceptual-performance and memory scale, cord BLL was not related to any of the scales; after partial regression analyses incorporating covariates no associations remained	Port Pirie cohort study covariates included sex, residence, HOME score and aspects regarding par- ents and delivery

Table 2.3 Human studies on effects of Pb on development

Table 2.4 Human studies on effects of Pb on development

authors	subjects	exposure	design	effects/observation	remarks
Murphy <i>et al.</i> (1990)	pregnant women (n=304- 335)	women lived in Titova Mitrovica in the neigh- bourhood of a Pb smelter, refinery and battery plant con- trols were from Pris- tina both towns are in Yugoslavia	BLLs were determined and preg- nancy out- come (first	current BLLs were 160 and 52 µg/l for women from T. Mitrovica and Pristina, respectively erythrocyte protoporphyrin was higher in exposed women than in controls (0.71 vs. 0.5 µmol/l) haemoglobin was similar for both groups (123-125 g/l) as well as serum ferritin (10.8-12.5 µg/l) adjustment for maternal age at first pregnancy, current smoking, ethnic group, and maternal education, resulted in a small dif- ference in the odds ratio regarding town of res- idence and spontaneous abortion (OR 1.1 (95% CI 0.9-1.4) or stillbirths (OR 1.0 (95% CI 0.6-1.5)	Kosovo study women were selected who had at least one pre- vious pregnancy and had not moved since their first pregnancy mean maternal and paternal age was 21.7-22.1 and 25.6-26.0 years for both regions, respec- tively mean maternal and paternal education was 8.7 and 11.2-11.3 for both regions, respectively in T. Mitrovica 28.8% of the hus- bands were employed in Pb industry whereas in Pristina none of them was occupationally involved with Pb mean number of previous pregnancies, percentage current smokers and alcohol users and ethnic groups were equally distributed among both regions
Factor- Litvak <i>et al.</i> (1991)	pregnant women exposed (n=401) and non- exposed (n=506) to Pb and their new- born babies	women lived in Titova Mitrovica in the neigh- bourhood of a Pb smelter, refinery and battery plant con- trols were from Pris- tina both towns are in Yugoslavia	BLL were	BLLs at mid-pregnancy, delivery and in umbilical cord were 191, 234 and 222 μ g/l for T. Mitrovica and 54, 68 and 56 μ g/l for Pris- tina birth weight did not vary significantly between both towns or mid-pregnancy BLLs (TM 3308 g vs. P 3361 g) nor did length of gestation (TM 274 days vs. P 275 days) pre- term delivery occurred in 16.8% of births in TM and 11.4% in P (unadjusted OR, using town as exposure variable = 1.6, 95% CI 1.3- 1.9), however, when exposure was defined by BLL the odds of preterm delivery did not increase with BLL (neither mid-pregnancy nor cord or maternal BLL at delivery)	Kosovo study

Table 2.5 Human studies on effects of Pb on development

authors	subjects	exposure	design	effects/observation	remarks
Roth- enberg <i>et al.</i> (1992)	pregnant women and her infant (n=1)	family lived in Mexico City	follow-up for 3 years BLLs of mother and child were determined child was reg- ularly assessed for neurologic and general development	during pregnancy maternal BLL was ca. $100 \ \mu g/l$ until week 36, at delivery the BLL had risen to ca. $500 \ \mu g/l$ cord BLL amounted to ca. $700 \ \mu g/l$, babies BLLs amounted to ca. $1000, 400, 350, 425, 325, 350$ and $175 \ \mu g/l$ at 1.5, 6, 12, 15, 18, 24, 30 and 36 months of age, respectively NBAS and G/R showed hypertonia, irritability, abnormal cry and other neurological soft signs at 2, 15 and 30 days; brainstem auditory evoked responses and clinical EEG were essentially normal at 20 days, 3, 6 and 12 months; EEG sleep pattern was fragmented at 20 days and 3 months and abnormal respiratory patterns were noted at 6 months; psychometric and diagnostic testing yielded scores within normal limits up to 3 years; at every examination, testing protocols noted some combination of restlessness, agitation, distractibility, high energy level, lack of persistence, short attention span and poor fine motor control	case at week 36 a glazed ceramic pitcher was brought into the family woman complained of lumbar pain radiating to the abdomen, paresthesia in the lower extremities, nausea, occa- sional vomiting and hypertension child was nursed continuously until the age of 27 months psychometric testing included Bayley scales, Ter- man Merril and McCarthy scales diag- nostic testing included Fagan test of infant intelligence
Wan et al. (1996)	pregnant mothers exposed (n=45) and non exposed (n=56) to Pb and their newborn infants	women worked in a storage bat- tery, the con- centration of air Pb in their work room ranged between 0,05- 0.5 mg/m ³ depending on operational site controls worked in a electronics assembly plant	blood and urine was col- lected at the beginning of pregnancy and then every three months till delivery and analysed for Pb and ZPP (blood) and ALA and creatinine (urine) birth characteristics were recorded	BLLs in the first trimester, at delivery and in the cord amounted to 178.8, 203.8 and 185.6 μ g/l for the exposed group and 54.1, 72.5 and 71.3 μ g/l for the controls, respectively ZPP levels were 841.5, 936.2 and 692.4 μ g/l for the exposed group and 319.8, 436.2 and 491.1 μ g/l for the controls, respectively values for BLL and ZPP were significantly different between the exposed and control women mean gestational age in the exposed group was 274.6 days and birth weight, height and head circumference were 3352 g, 49.5 cm and 33.7 for the female babies and 3315 g, 49.7 cm and 33.6 cm for the female babies, no significant differ- ences existed between the control and the exposed groups in the exposed group there were 2 still births and 4 pre-term births, whereas in the control group there were 3 pre-term births and no stillbirths	women had an average age of 25.5 y (23-34) and a mean exposure time of 3.5 years (0.6-6) pregnancies were diagnosed as normal and women had no chronic illnesses control women were selected with similar age distribution

 δ ALA= δ -aminolevulinic acid; BLL = blood Pb level; CI = confidence interval; G/R = Graham/Rosenblith Behavioural Examination of the Neonate included General Maturation scale, Neurological Soft Sign Score and Muscle Tonus; HIAA = 5-hydroxy indoleacetic acid; HOME = Home Observation for Measurement of the Environment; MDI = mental development index (Bayley); NBAS = the Brazelton Neonatal Behavioural Assessment Scale; PDI = psychomotor development index (Bayley); ZPP = zinc protoporphyrin IX.

Mental Development Index is an age-corrected scale that assesses infants "sensory-perceptual acuities, discriminations, and the ability to respond to these; the early acquisition of 'object constancy', memory, learning, and problem solving ability: vocalizations and the beginnings of verbal communication; and early evidence of the ability to form generalizations and classifications, which is the basis of abstract thinking". The McCarthy Scales of Children's Abilities can be subdivided in verbal, perceptual-performance and quantitative scales contributing to the general cognitive index and, partially overlapping the first three, in a memory and motor scale. The items recorded for the G/R Soft Signs Scale included ratings of slight or moderate jitteriness, decreased strength of cry, high pitched cry, slight or definite indication of hypersensitivity to touch, to sound or to light, sharp state swings, and setting sun sign (one instance).

Table 3.1 Human studies on effects of Pb on lactation

authors	subjects	exposure	design	effects/observation	remarks
Ryu <i>et</i> <i>al.</i> (1978)	lactating woman	woman had worked 3 years (until 7 weeks before delivery) by a producer of electrical stor- age batteries and had been exposed dur- ing this occu- pation to considerable amounts of Pb dust	determina- tion of Pb content in milk and blood of mother and child from 8 weeks before parti- tion until day 245 of lactation	during exposure maternal blood Pb concen- tration ranged from 0.43-0.57 mg/l which decreased to 0.33 mg/l at delivery (mean Iowa women 0.1 mg/l (range 0.02 to 0.29)); during lactation Pb levels were higher with a peak after 6 months (0.63 mg/l) Pb concen- tration in cord blood amounted to 0.33 mg/l and in blood taken from the child aged 12 h, 6 days and 9 months 0.7, 0.51 and 0.2 mg/l, respectively. milk Pb concentrations were in the first three weeks of lactation 19-63 μ g/l and the follow- ing month 36-62 μ g/l, where after it decreased.; mean value 3rd month of lacta- tion 24 μ g/l, and month 4-7 of lactation 4-14 μ g/l.	case woman was 25 years old first born daughter to the women and weight 2982 g, physical and neu- rologic examinations did not reveal any abnormality
Nami- hira <i>et</i> <i>al.</i> (1993)	healthy lactating women aged 15-39 (n=35)	living <200 m around a Pb smelter in 3 areas of Mex- ico City >1 year	nation in blood and milk col-	mean blood Pb level was 0.46 mg/l (range 0.15-0.99 mg/l) geometric mean milk level was $24.7 \mu g/l$ (range $9.2-350 \mu g/l$); 54% of samples was below detection level high correlation blood-milk Pb level (r=0.88) no correlations between parity, months of lactation, no. of children, years of residence and breast milk levels	women were 15-39 years of age and belonged to low socioeco- nomic class 51% of women had lived >10 years in this area 74% of the women had never smoked and the rest smoked <5 cigarettes w 57% of the women had not nursed before mean duration of nursing 5.85 mo (range 1-27 mo)
Palm- inger Hallén <i>et al.</i> (1995)	healthy pregnant women (n=39)	women lived in Rönnskär or Holmsund in the neighbour- hood of Rönnskär is a copper and Pb smelter situ- ated	blood at	mean Pb concentration in blood from exposed mothers was $38.7 \ \mu g/l$ differed sig- nificantly from the control group, $32.3 \ \mu g/l$ at delivery (range $18-70 \ \mu g/l$) 6w postpartum Pb concentration in the blood of exposed mothers had reduced to $31.7 \ \mu g/l$, whereas the concentration in the control group remained stable Pb concentration in milk 6w postpartum differed significantly between the exposed and control group, $0.9 \ \mu g/l$ ver- sus $0.5 \ \mu g/l$ (range 0.1 - $2.2 \ \mu g/l$) 6w after delivery no correlation between Pb levels in blood and milk was observed, Pb levels in blood at delivery and in milk 6w postpartum were correlated as well as living area and milk Pb concentration	the mean age of both groups of women was 29 years 13 and 17 women in the exposed area and control group, respec- tively, were primaparous 8 and 4 children in the exposed and control group, respectively, received infant formula in addi- tion to breast-feeding 6 weeks postpartum 16/35 and 37/39 samples of milk in exposed and control women respectively, were below the defined detection limit (1 µg/l)

authors	subjects	exposure	design	effects/observation	remarks
Noirfalise et al. (1967)	lactating women (n=76)	no particular expo- sure, women lived in the province of Liège	Pb analyses in breast milk	milk contained on average 277 μg Pb/l (range 0-900 $\mu g/l)$ two samples contained ca. 1200 and 1500 $\mu g/l$	women did not suffer from saturn- ism analytical method applied was a polarographic method
Lamm <i>et</i> al. (1973)	lactating women (n=7)	no particular expo- sure women lived in USA	determination of Pb content in milk	milk Pb concentrations amounted to 20 $\mu g/l$ (range 0-70 $\mu g/l)$	
Pinkerton et al. (1973)	healthy lactating women aged 21- 37 years (n=14)	no particular expo- sure women lived in Cin- cinnati, Ohio	Pb content in	Pb concentration in human and bovine milk ranged 6.0-20 μ g/l (median 10.9 μ g/l) and 9-154 μ g/l (median 42.0 μ g/l), respectively	women were 21-37 years of age women already had 1-6 children and nursed the present infant 2-46 weeks at sampling time 8 women smoked
Dillon <i>et</i> al. (1974)	lactating women (n=29)	no particular expo- sure women lived throughout the USA	Pb content in	mean milk Pb concentration was 26 $\mu g/l$ (range 6-58 $\mu g/l)$	women were white, urban, middle- class donors, aged 23-28
Casey (1977)	lactating women (n=25)	no particular expo- sure women lived in New Zealand	pooled milk sample taken 4- 10 days after start of lactation	milk Pb content <10 µg/l	
Chatranon <i>et al.</i> (1978)	lactating women (n=164)	no particular expo- sure, women lived in heavily polluted areas of Bangkok	lected from 1	mean milk Pb level was $84.6 \ \mu g/l$ (range 13.6-222.2 $\ \mu g/l$) no differences were observed between Pb levels in milks collected in differ- ent periods post partum	
Larsson <i>et</i> <i>al.</i> (1981)	healthy lactating women (n=41)	no particular expo- sure women lived in Uppsala (S)	measurement of Pb in breast milk 3 (18) and 6 (23) months post partum	mean Pb content in milk 2 μ g/l (fresh weight) (range 0.5-9.0 μ g/l) no differences in milk Pb content existed between the groups the calcu- lated median weekly intake was 1.9 and 1.2 μ g/kg bw for 3 and 6-month-old infants, respec- tively	
Moore <i>et</i> <i>al.</i> (1982)	healthy lactating women (n=93)	no particular expo- sure women lived in Glasgow	determination of Pb in milk and blood samples PN 6 w	geometric means for maternal and infant blood were 0.16 and 0.13 mg Pb/l, respectively, which were highly correlated median value for breast milk Pb concentration was 21 μ g/l, which was correlated with mater- nal blood Pb concentration	none of the women (aged 17-37) had any known history of previous industrial Pb exposure all children showed normal mental and physical development
Huat <i>et al.</i> (1983)	lactating women (n=89-91)	three rural and three urban 3 areas in Malaysia	determination of Pb in milk at various times of lactation (<1- >12 months)	mean milk Pb concentration significantly dif- fered between urban (25.3 μ g/l) and rural (21.1 μ g/l) areas no specific pattern in Pb levels at different peri- ods of lactation both among the urban and rural samples was observed	the estimated intake was for urban areas 15.5, 18.1 and 25.2 μ g/day and for rural areas 12.9, 15.1 and 21.0 μ g/day for infants at birth, and at the age of 6 and 12 months, respectively

authors	subjects	exposure	design	effects/observation	remarks
Kovar <i>et al.</i> (1984)	healthy pregnant women (n=28) and their infants	no particu- lar expo- sure women lived in London	measurement of Pb in blood of mother at delivery and PN day 5, in blood of child (cord) at delivery and in milk PN day 5	9 breast milk samples contained 4.1 μ g Pb/ l on average (range 0-8.9 μ g/l), 19 samples contained amounts below the detection limit (1 μ g/l) maternal blood contained 99.5 and 101.5 μ g Pb/l at delivery and 5 days post partum, respectively and cord blood 87.0 μ g Pb/l at delivery	mean age of women 29.2 medi- cally uncomplicated pregnancies birth weight mean 3470 g all but one women took iron sup- plements during pregnancy and 9 took also multivitamins 6 women smoked during preg- nancy and 2 until pregnancy was diagnosed
Rock- way <i>et</i> <i>al.</i> (1984)	lactating women in rural and urban areas (in total 39 women)	no particu- lar expo- sure women originated from rural and urban areas around Tucson, Arizona	measurement of Pb concentration in milk, hair and blood 1-16 months after partition	milk and blood contained 2.8 μ g Pb/l and 119 μ g Pb /l; hair contained 2002 μ g Pb/kg no correlations were observed between the three parameters or between content in milk, month of lactation, concentration in other tissues and environmental concentra- tion no differences between locations	women were 22-47 years of age
Ong et al. (1985)	pregnant/ lactating women and their babies (n=114)	no particu- lar expo- sure, women lived in Malaysia	Pb analysis in maternal and cord blood collected at delivery and in milk collected PN day 3-5; 9 women continued to col- lect milk at PN days 3, 7, 10, 14, 20 and 30	on average maternal BLL was 151.3 μ g/l (range 75.6-238.3), cord BLL was 114 μ g/l (range 49.7-254.9) and breast milk con- tained 47.66 μ g Pb/l (range 24.86-105.7 μ g/l) BLL in maternal and cord blood were strongly relatedPb concentrations in breast milk did not vary significantly from three days to over a month postpartum	
Rabino witz et al. (1985)	lactating women and their new borns (n=249)	no particu- lar expo- sure; families lived within Greater Boston	Pb analysis in milk collected 1 and 6 months post par- tum, in cord blood and in capillary blood at 6 months of age	breast milk contained on average 17 µg Pb/l (range 0-72 µg/l) no differences were found in Pb level of breast milk collected 1 or 6 months post partum cord blood Pb (mean 0.072 mg/l, range 0- 0.25) correlates poorly with breast milk Pb (mean 0.062 mg/l, range 0-0.49 mg/l) blood Pb at 6 months of age correlate very well with dietary Pb intake among children who were nursed	children were selected out of 11837 consecutive births and were drawn equally from the highest, lowest and centermost deciles of blood Pb children were free of serious med- ical conditions in general, the mothers were white (87%) and well educated (mean maternal schooling = 14.5 years), their mean age was 30 years

Table 3.3 Human studies on effects of Pb on lactation

authors	subjects	exposure	design	effects/observation	remarks
Sternowsky and Wesso- lowski (1985)	lactating women (n=10)	no particular exposure women origi- nate from rural (Soltau) and urban areas (Ham- burg, D)	measurement of Pb in milk 0- 90 days post- partum	colostrum and mature milk contained 15.5 and 9.1 μ g/l and 12.5 and 8.0 μ g/l in urban and rural areas, respectively from day 15 on mean concentrations were 13.2 and 9.1 μ g/l, differing significantly from day 45 on (Hamburg increasing, Soltau decreasing) no differences in milk Pb content during day women >30 years excreted significantly more Pb into milk till day 5 than women <30 years calculated daily intake (840 ml milk, bw 5.5 kg) amounted to 0.9-1.3 and 1.5-2.3 μ g/kg/day for rural and city infants, respectively	non-smoking females one rural women excreted very high lev- els of Pb into milk (cause unknown) and was excluded from study
Dabeka <i>et al.</i> (1986)	volunteers across Canada (n=210)	no particular exposure	determination of Pb content in milk sam- ples	geometric mean milk level amounted to $0.57~\mu g/l$ (range <0.05 - $15.8~\mu g/l)$ levels were highly correlated with age of house and traffic exposure (p<0.012)	
Schramel <i>et al.</i> (1988)	pregnant women (n=33) and their new- born babies	no particular exposure women lived in Munich (D)	measurement of Pb in mater- nal blood just before delivery, in cord blood after birth, in placenta and in milk	maternal blood and cord blood contained 39 and 30 μ g/l, respectively placenta contained 18.7 μ g/kg (fresh weight) milk contained 2.6 μ g/l correlations exist between placenta and maternal blood (r=0.69), placenta and cord blood (r=0.67) and maternal and cord blood (r=0.90)	
Parr <i>et al</i> . (1991)	lactating women (n=2-74)	no particular exposure women belonged to A (well-to- do), B (urban poor) or C (living in rural environ- ment) groups in Guate- mala, Hun- gary, Nigeria, Philippines, Zaire (only A and C) and Sweden (one group)	Pb determina- tion in milk collected at noon 2 months after start of lactation	median milk Pb levels were 2.9, 14.9, 4.9, 16.6, 16.8 and 5.0 μ g/l in Guatemala, Hungary, Nigeria, Philippines, Sweden and Zaire, respectively no significant differences existed between the different socioeconomic classes	

Table 3.5 Human studies on effects of Pb on lactation

authors	subjects	exposure	design	effects/observation	remarks
Ende and Hille (1992)	lactating women (n=102- 238) over the years 1987-1990	no particular exposure women lived in Niedersa- chsen, Ger- many	Pb-determina- tion in milk	1987: milk Pb level <4-81 μg/l (median <4 μg/l) 1988: milk Pb level <2-124 μg/l (median 43 μg/l) 1989: milk Pb level <10-94 μg/l (median 35 μg/l) 1990: milk Pb level <3-50 μg/l (median 4 μg/ l)	
Plöckinger et al. (1993)	women just after delivery (n=51)	no particular exposure women lived in Vienna (A)	blood immedi- ately after delivery, in	maternal and cord blood contained 37.0 and 26.3 μ g/l, respectively urine of mother and child contained 0.05 and 0.29 μ g/l, respectively milk contained 35.8 μ g/l (range 19-70.3 μ g/l) a correlation was found between the Pb con- centration in mother and child blood (r=0.66)	deliveries without problems at full term mean age of mothers 23.7 years 30 mother with first-child 10 women smoked cigarettes pregnancy 40.4 w birth weight 3354 g
Firan <i>et al.</i> (1994)	lactating women (n=32)	no particular exposure, women lived in Graz, capi- tal of Styria and the coun- tryside of Styria (A)	Pb analyses in milk	the median milk Pb concentration was 3.4 μ g/l (range 0-20.4 μ g/l) there was no difference in Pb concentration between milk from urban mothers and from mothers from the country-side	mean age of women 29 years
Saleh <i>et al.</i> (1996)	lactating women from 20 different areas (n=6)	women liv- ing in 20 urban and rural areas in Egypt	determination of Pb content in breast milk	average district concentrations of Pb in breast milk ranged from 9.0-101.4 μ g/l (individual range 0-158 μ g/l) with highest concentrations in urbanic areas	women (aged 20-40) had been living in the same area for at least 10 years and had given birth to their 1st or 2nd child, which was healthy 85% of the women was a housewife none of the women smoked
Frkovic <i>et</i> al. (1997)	lactating women (n=29)	residence in urban or rural area (Croatia) (annual mean 0.054-0.151 vs. 0.013- 0.026 µg Pb/ m ³)	determination of Pb concen- tration in milk PN days 2 and 12	Pb content of milk averaged 7.3 μ g/l (range 0.3-44 μ g/l) significant differences in milk Pb concentration exist due to residence (urban 10.6 vs region 4.7 μ g/l) no differences due to age, parity or smoking habits	women were 17-45 years of age and had normal pregnancy parity 1-7, weight gain 7-22 kg, gestation 36-41 w newborns weight 2200-4400 g, length 46-53 cm, Apgar score (1/5 min) 5 10/7-10
Vavilis <i>et al.</i> (1997)	healthy lactating women (n=40-51)	rural and urban (Thes- saloniki) areas in Greece	determination of Pb concen- tration in milk from PN days 4-5 (colostrum)	mean milk Pb concentrations were 90 μ g/l (range 50- 250 μ g/l) and 84 μ g/l (range 50- 140 μ g/l) for urban and rural areas, respectively (non-significant difference)	women were aged 18-41 and had gestation periods of 37-41 weeks the pregnancies, deliveries and infants were normal air Pb concentrations in the two year prior to study ranged from 0.54-0.67 μ g/m3 in the city; in rural areas they were 15 times lower

Table 3.6 Human studies on effects of Pb on lactation

authors	subjects	exposure	design	effects/observation	remarks
Gulson <i>et</i> al. (1998)	healthy lac- tating	women belonged to	determination of Pb content by	Pb content in maternal blood (all sub- jects) was <0.5 mg/l, in cord blood of	women were 18-35 years of age
	women (n=15)	Australian immigrants or to the 2nd generation Australian women	isotope ratio measurement in venous blood PN day 60, and breast milk col- lected monthly	immigrants 9.1-36.1 µg/l (mean 20.2	
Friel <i>et al.</i> (1999)	healthy lac- tating women, who deliv- ered pre- mature (wk 29.4) (n=24) and full-term (wk 39.8) (n=29) infants	no particu- lar exposure women lived in Newfound- land, Can- ada	determination of Pb in milk collected PN days 2 to 56 weekly with one final sam- ple taken PN day 84	Pb concentration in milk from women with a premature child varied from 0-1 $\mu g/l$ and in milk from women with a full-term child from 0-4 $\mu g/l$	none of the women (aged 20-35) was vegetarian ca. 95% of the women was of European origin and no aboriginal women participated birth weight was 1312 and 3672 g for premature and full-term infants, respectively
Tripathi <i>et</i> <i>al</i> . (1999)	lactating women (n=30)	no particu- lar exposure Mumbai area (India)	determination of Pb content in milk samples	geometric mean milk level amounted to $1.9 \ \mu g/l$ and $1.7 \ \mu g/l$ for human and cow milk, respectively daily intake for a 6-12 month old infant from human milk was estimated to be 1.3 μg , from formulae up to 9.4 μg	

PN = postnatal; BLL = blood Pb level

Ε

Calculation safe levels of lead in (human) breast milk

Assumptions

- body weight woman: 60 kg
- body weight infant: 4.5 kg (4-5 kg)
- Intake breast milk: 900 ml (800-1000 ml)
- An infant is as sensitive for the effects of lead as an adult

Calculation safe levals of lead in (human) breast milk

The FAO/WHO (FAO93) recommends a PWTI (provisional tolerable weekly intake) of $25 \mu g/kg$ body weight. This corresponds to:

- a tolerable intake level of 3.6 µg/kg body weight per day.
- a safe intake level per infant of 14 μ g/ infant /day
- a safe level of lead in breast milk of 16 μ g/l

In conclusion, the committee consideres 16 µg lead/ liter breast milk as a safe level.

F

Abbreviations

Abbreviations used:

bw	body weight
CI	confidence interval
CNS	central nervous system
d	day
F	female(s)
GD	gestation day
i.p.	intraperitoneal
IRPC	increased renal pelvic cavitation
i.v.	intravenous
М	male(s)
n	number
NOAEL	no adverse effect level
OECD	Organisation for Economic Cooperation and Development
OR	Odds ratio
ОТ	Operating theatre
PN	postnatal
RR	relative risk